lax/
eigh.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
//! Eigenvalue problem for symmetric/Hermitian matricies
//!
//! LAPACK correspondance
//! ----------------------
//!
//! | f32   | f64   | c32   | c64   |
//! |:------|:------|:------|:------|
//! | ssyev | dsyev | cheev | zheev |

use super::*;
use crate::{error::*, layout::MatrixLayout};
use cauchy::*;
use num_traits::{ToPrimitive, Zero};

pub struct EighWork<T: Scalar> {
    pub n: i32,
    pub jobz: JobEv,
    pub eigs: Vec<MaybeUninit<T::Real>>,
    pub work: Vec<MaybeUninit<T>>,
    pub rwork: Option<Vec<MaybeUninit<T::Real>>>,
}

pub trait EighWorkImpl: Sized {
    type Elem: Scalar;
    fn new(calc_eigenvectors: bool, layout: MatrixLayout) -> Result<Self>;
    fn calc(&mut self, uplo: UPLO, a: &mut [Self::Elem])
        -> Result<&[<Self::Elem as Scalar>::Real]>;
    fn eval(self, uplo: UPLO, a: &mut [Self::Elem]) -> Result<Vec<<Self::Elem as Scalar>::Real>>;
}

macro_rules! impl_eigh_work_c {
    ($c:ty, $ev:path) => {
        impl EighWorkImpl for EighWork<$c> {
            type Elem = $c;

            fn new(calc_eigenvectors: bool, layout: MatrixLayout) -> Result<Self> {
                assert_eq!(layout.len(), layout.lda());
                let n = layout.len();
                let jobz = if calc_eigenvectors {
                    JobEv::All
                } else {
                    JobEv::None
                };
                let mut eigs = vec_uninit(n as usize);
                let mut rwork = vec_uninit(3 * n as usize - 2 as usize);
                let mut info = 0;
                let mut work_size = [Self::Elem::zero()];
                unsafe {
                    $ev(
                        jobz.as_ptr(),
                        UPLO::Upper.as_ptr(), // dummy, working memory is not affected by UPLO
                        &n,
                        std::ptr::null_mut(),
                        &n,
                        AsPtr::as_mut_ptr(&mut eigs),
                        AsPtr::as_mut_ptr(&mut work_size),
                        &(-1),
                        AsPtr::as_mut_ptr(&mut rwork),
                        &mut info,
                    );
                }
                info.as_lapack_result()?;
                let lwork = work_size[0].to_usize().unwrap();
                let work = vec_uninit(lwork);
                Ok(EighWork {
                    n,
                    eigs,
                    jobz,
                    work,
                    rwork: Some(rwork),
                })
            }

            fn calc(
                &mut self,
                uplo: UPLO,
                a: &mut [Self::Elem],
            ) -> Result<&[<Self::Elem as Scalar>::Real]> {
                let lwork = self.work.len().to_i32().unwrap();
                let mut info = 0;
                unsafe {
                    $ev(
                        self.jobz.as_ptr(),
                        uplo.as_ptr(),
                        &self.n,
                        AsPtr::as_mut_ptr(a),
                        &self.n,
                        AsPtr::as_mut_ptr(&mut self.eigs),
                        AsPtr::as_mut_ptr(&mut self.work),
                        &lwork,
                        AsPtr::as_mut_ptr(self.rwork.as_mut().unwrap()),
                        &mut info,
                    );
                }
                info.as_lapack_result()?;
                Ok(unsafe { self.eigs.slice_assume_init_ref() })
            }

            fn eval(
                mut self,
                uplo: UPLO,
                a: &mut [Self::Elem],
            ) -> Result<Vec<<Self::Elem as Scalar>::Real>> {
                let _eig = self.calc(uplo, a)?;
                Ok(unsafe { self.eigs.assume_init() })
            }
        }
    };
}
impl_eigh_work_c!(c64, lapack_sys::zheev_);
impl_eigh_work_c!(c32, lapack_sys::cheev_);

macro_rules! impl_eigh_work_r {
    ($f:ty, $ev:path) => {
        impl EighWorkImpl for EighWork<$f> {
            type Elem = $f;

            fn new(calc_eigenvectors: bool, layout: MatrixLayout) -> Result<Self> {
                assert_eq!(layout.len(), layout.lda());
                let n = layout.len();
                let jobz = if calc_eigenvectors {
                    JobEv::All
                } else {
                    JobEv::None
                };
                let mut eigs = vec_uninit(n as usize);
                let mut info = 0;
                let mut work_size = [Self::Elem::zero()];
                unsafe {
                    $ev(
                        jobz.as_ptr(),
                        UPLO::Upper.as_ptr(), // dummy, working memory is not affected by UPLO
                        &n,
                        std::ptr::null_mut(),
                        &n,
                        AsPtr::as_mut_ptr(&mut eigs),
                        AsPtr::as_mut_ptr(&mut work_size),
                        &(-1),
                        &mut info,
                    );
                }
                info.as_lapack_result()?;
                let lwork = work_size[0].to_usize().unwrap();
                let work = vec_uninit(lwork);
                Ok(EighWork {
                    n,
                    eigs,
                    jobz,
                    work,
                    rwork: None,
                })
            }

            fn calc(
                &mut self,
                uplo: UPLO,
                a: &mut [Self::Elem],
            ) -> Result<&[<Self::Elem as Scalar>::Real]> {
                let lwork = self.work.len().to_i32().unwrap();
                let mut info = 0;
                unsafe {
                    $ev(
                        self.jobz.as_ptr(),
                        uplo.as_ptr(),
                        &self.n,
                        AsPtr::as_mut_ptr(a),
                        &self.n,
                        AsPtr::as_mut_ptr(&mut self.eigs),
                        AsPtr::as_mut_ptr(&mut self.work),
                        &lwork,
                        &mut info,
                    );
                }
                info.as_lapack_result()?;
                Ok(unsafe { self.eigs.slice_assume_init_ref() })
            }

            fn eval(
                mut self,
                uplo: UPLO,
                a: &mut [Self::Elem],
            ) -> Result<Vec<<Self::Elem as Scalar>::Real>> {
                let _eig = self.calc(uplo, a)?;
                Ok(unsafe { self.eigs.assume_init() })
            }
        }
    };
}
impl_eigh_work_r!(f64, lapack_sys::dsyev_);
impl_eigh_work_r!(f32, lapack_sys::ssyev_);