1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
//! Memory layout of matrices
//!
//! Different from ndarray format which consists of shape and strides,
//! matrix format in LAPACK consists of row or column size and leading dimension.
//!
//! ndarray format and stride
//! --------------------------
//!
//! Let us consider 3-dimensional array for explaining ndarray structure.
//! The address of `(x,y,z)`-element in ndarray satisfies following relation:
//!
//! ```text
//! shape = [Nx, Ny, Nz]
//!     where Nx > 0, Ny > 0, Nz > 0
//! stride = [Sx, Sy, Sz]
//!
//! &data[(x, y, z)] = &data[(0, 0, 0)] + Sx*x + Sy*y + Sz*z
//!     for x < Nx, y < Ny, z < Nz
//! ```
//!
//! The array is called
//!
//! - C-continuous if `[Sx, Sy, Sz] = [Nz*Ny, Nz, 1]`
//! - F(Fortran)-continuous if `[Sx, Sy, Sz] = [1, Nx, Nx*Ny]`
//!
//! Strides of ndarray `[Sx, Sy, Sz]` take arbitrary value,
//! e.g. it can be non-ordered `Sy > Sx > Sz`, or can be negative `Sx < 0`.
//! If the minimum of `[Sx, Sy, Sz]` equals to `1`,
//! the value of elements fills `data` memory region and called "continuous".
//! Non-continuous ndarray is useful to get sub-array without copying data.
//!
//! Matrix layout for LAPACK
//! -------------------------
//!
//! LAPACK interface focuses on the linear algebra operations for F-continuous 2-dimensional array.
//! Under this restriction, stride becomes far simpler; we only have to consider the case `[1, S]`
//! This `S` for a matrix `A` is called "leading dimension of the array A" in LAPACK document, and denoted by `lda`.
//!

use super::*;

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum MatrixLayout {
    C { row: i32, lda: i32 },
    F { col: i32, lda: i32 },
}

impl MatrixLayout {
    pub fn size(&self) -> (i32, i32) {
        match *self {
            MatrixLayout::C { row, lda } => (row, lda),
            MatrixLayout::F { col, lda } => (lda, col),
        }
    }

    pub fn resized(&self, row: i32, col: i32) -> MatrixLayout {
        match *self {
            MatrixLayout::C { .. } => MatrixLayout::C { row, lda: col },
            MatrixLayout::F { .. } => MatrixLayout::F { col, lda: row },
        }
    }

    pub fn lda(&self) -> i32 {
        std::cmp::max(
            1,
            match *self {
                MatrixLayout::C { lda, .. } | MatrixLayout::F { lda, .. } => lda,
            },
        )
    }

    pub fn len(&self) -> i32 {
        match *self {
            MatrixLayout::C { row, .. } => row,
            MatrixLayout::F { col, .. } => col,
        }
    }

    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    pub fn same_order(&self, other: &MatrixLayout) -> bool {
        match (self, other) {
            (MatrixLayout::C { .. }, MatrixLayout::C { .. }) => true,
            (MatrixLayout::F { .. }, MatrixLayout::F { .. }) => true,
            _ => false,
        }
    }

    pub fn toggle_order(&self) -> Self {
        match *self {
            MatrixLayout::C { row, lda } => MatrixLayout::F { lda: row, col: lda },
            MatrixLayout::F { col, lda } => MatrixLayout::C { row: lda, lda: col },
        }
    }

    /// Transpose without changing memory representation
    ///
    /// C-contigious row=2, lda=3
    ///
    /// ```text
    /// [[1, 2, 3]
    ///  [4, 5, 6]]
    /// ```
    ///
    /// and F-contigious col=2, lda=3
    ///
    /// ```text
    /// [[1, 4]
    ///  [2, 5]
    ///  [3, 6]]
    /// ```
    ///
    /// have same memory representation `[1, 2, 3, 4, 5, 6]`, and this toggles them.
    ///
    /// ```
    /// # use lax::layout::*;
    /// let layout = MatrixLayout::C { row: 2, lda: 3 };
    /// assert_eq!(layout.t(), MatrixLayout::F { col: 2, lda: 3 });
    /// ```
    pub fn t(&self) -> Self {
        match *self {
            MatrixLayout::C { row, lda } => MatrixLayout::F { col: row, lda },
            MatrixLayout::F { col, lda } => MatrixLayout::C { row: col, lda },
        }
    }
}

/// In-place transpose of a square matrix by keeping F/C layout
///
/// Transpose for C-continuous array
///
/// ```rust
/// # use lax::layout::*;
/// let layout = MatrixLayout::C { row: 2, lda: 2 };
/// let mut a = vec![1., 2., 3., 4.];
/// square_transpose(layout, &mut a);
/// assert_eq!(a, &[1., 3., 2., 4.]);
/// ```
///
/// Transpose for F-continuous array
///
/// ```rust
/// # use lax::layout::*;
/// let layout = MatrixLayout::F { col: 2, lda: 2 };
/// let mut a = vec![1., 3., 2., 4.];
/// square_transpose(layout, &mut a);
/// assert_eq!(a, &[1., 2., 3., 4.]);
/// ```
///
/// Panics
/// ------
/// - If size of `a` and `layout` size mismatch
///
pub fn square_transpose<T: Copy>(layout: MatrixLayout, a: &mut [T]) {
    let (m, n) = layout.size();
    let n = n as usize;
    let m = m as usize;
    assert_eq!(a.len(), n * m);
    for i in 0..m {
        for j in (i + 1)..n {
            let a_ij = a[i * n + j];
            let a_ji = a[j * m + i];
            a[i * n + j] = a_ji;
            a[j * m + i] = a_ij;
        }
    }
}

/// Out-place transpose for general matrix
///
/// Examples
/// ---------
///
/// ```rust
/// # use lax::layout::*;
/// let layout = MatrixLayout::C { row: 2, lda: 3 };
/// let a = vec![1., 2., 3., 4., 5., 6.];
/// let (l, b) = transpose(layout, &a);
/// assert_eq!(l, MatrixLayout::F { col: 3, lda: 2 });
/// assert_eq!(b, &[1., 4., 2., 5., 3., 6.]);
/// ```
///
/// ```rust
/// # use lax::layout::*;
/// let layout = MatrixLayout::F { col: 2, lda: 3 };
/// let a = vec![1., 2., 3., 4., 5., 6.];
/// let (l, b) = transpose(layout, &a);
/// assert_eq!(l, MatrixLayout::C { row: 3, lda: 2 });
/// assert_eq!(b, &[1., 4., 2., 5., 3., 6.]);
/// ```
///
/// Panics
/// ------
/// - If input array size and `layout` size mismatch
///
pub fn transpose<T: Copy>(layout: MatrixLayout, input: &[T]) -> (MatrixLayout, Vec<T>) {
    let (m, n) = layout.size();
    let transposed = layout.resized(n, m).t();
    let m = m as usize;
    let n = n as usize;
    assert_eq!(input.len(), m * n);

    let mut out: Vec<MaybeUninit<T>> = vec_uninit(m * n);

    match layout {
        MatrixLayout::C { .. } => {
            for i in 0..m {
                for j in 0..n {
                    out[j * m + i].write(input[i * n + j]);
                }
            }
        }
        MatrixLayout::F { .. } => {
            for i in 0..m {
                for j in 0..n {
                    out[i * n + j].write(input[j * m + i]);
                }
            }
        }
    }
    (transposed, unsafe { out.assume_init() })
}

/// Out-place transpose for general matrix
///
/// Examples
/// ---------
///
/// ```rust
/// # use lax::layout::*;
/// let layout = MatrixLayout::C { row: 2, lda: 3 };
/// let a = vec![1., 2., 3., 4., 5., 6.];
/// let mut b = vec![0.0; a.len()];
/// let l = transpose_over(layout, &a, &mut b);
/// assert_eq!(l, MatrixLayout::F { col: 3, lda: 2 });
/// assert_eq!(b, &[1., 4., 2., 5., 3., 6.]);
/// ```
///
/// ```rust
/// # use lax::layout::*;
/// let layout = MatrixLayout::F { col: 2, lda: 3 };
/// let a = vec![1., 2., 3., 4., 5., 6.];
/// let mut b = vec![0.0; a.len()];
/// let l = transpose_over(layout, &a, &mut b);
/// assert_eq!(l, MatrixLayout::C { row: 3, lda: 2 });
/// assert_eq!(b, &[1., 4., 2., 5., 3., 6.]);
/// ```
///
/// Panics
/// ------
/// - If input array sizes and `layout` size mismatch
///
pub fn transpose_over<T: Copy>(layout: MatrixLayout, from: &[T], to: &mut [T]) -> MatrixLayout {
    let (m, n) = layout.size();
    let transposed = layout.resized(n, m).t();
    let m = m as usize;
    let n = n as usize;
    assert_eq!(from.len(), m * n);
    assert_eq!(to.len(), m * n);

    match layout {
        MatrixLayout::C { .. } => {
            for i in 0..m {
                for j in 0..n {
                    to[j * m + i] = from[i * n + j];
                }
            }
        }
        MatrixLayout::F { .. } => {
            for i in 0..m {
                for j in 0..n {
                    to[i * n + j] = from[j * m + i];
                }
            }
        }
    }
    transposed
}