1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
//! Safe Rust wrapper for LAPACK without external dependency.
//!
//! [Lapack] trait
//! ----------------
//!
//! This crates provides LAPACK wrapper as a traits.
//! For example, LU decomposition of general matrices is provided like:
//!
//! ```ignore
//! pub trait Lapack {
//! fn lu(l: MatrixLayout, a: &mut [Self]) -> Result<Pivot>;
//! }
//! ```
//!
//! see [Lapack] for detail.
//! This trait is implemented for [f32], [f64], [c32] which is an alias to `num::Complex<f32>`,
//! and [c64] which is an alias to `num::Complex<f64>`.
//! You can use it like `f64::lu`:
//!
//! ```
//! use lax::{Lapack, layout::MatrixLayout, Transpose};
//!
//! let mut a = vec![
//! 1.0, 2.0,
//! 3.0, 4.0
//! ];
//! let mut b = vec![1.0, 2.0];
//! let layout = MatrixLayout::C { row: 2, lda: 2 };
//! let pivot = f64::lu(layout, &mut a).unwrap();
//! f64::solve(layout, Transpose::No, &a, &pivot, &mut b).unwrap();
//! ```
//!
//! When you want to write generic algorithm for real and complex matrices,
//! this trait can be used as a trait bound:
//!
//! ```
//! use lax::{Lapack, layout::MatrixLayout, Transpose};
//!
//! fn solve_at_once<T: Lapack>(layout: MatrixLayout, a: &mut [T], b: &mut [T]) -> Result<(), lax::error::Error> {
//! let pivot = T::lu(layout, a)?;
//! T::solve(layout, Transpose::No, a, &pivot, b)?;
//! Ok(())
//! }
//! ```
//!
//! There are several similar traits as described below to keep development easy.
//! They are merged into a single trait, [Lapack].
//!
//! Linear equation, Inverse matrix, Condition number
//! --------------------------------------------------
//!
//! According to the property input metrix, several types of triangular decomposition are used:
//!
//! - [solve] module provides methods for LU-decomposition for general matrix.
//! - [solveh] module provides methods for Bunch-Kaufman diagonal pivoting method for symmetric/Hermitian indefinite matrix.
//! - [cholesky] module provides methods for Cholesky decomposition for symmetric/Hermitian positive dinite matrix.
//!
//! Eigenvalue Problem
//! -------------------
//!
//! According to the property input metrix,
//! there are several types of eigenvalue problem API
//!
//! - [eig] module for eigenvalue problem for general matrix.
//! - [eigh] module for eigenvalue problem for symmetric/Hermitian matrix.
//! - [eigh_generalized] module for generalized eigenvalue problem for symmetric/Hermitian matrix.
//!
//! Singular Value Decomposition
//! -----------------------------
//!
//! - [svd] module for singular value decomposition (SVD) for general matrix
//! - [svddc] module for singular value decomposition (SVD) with divided-and-conquer algorithm for general matrix
//! - [least_squares] module for solving least square problem using SVD
//!
#![deny(rustdoc::broken_intra_doc_links, rustdoc::private_intra_doc_links)]
#[cfg(any(feature = "intel-mkl-system", feature = "intel-mkl-static"))]
extern crate intel_mkl_src as _src;
#[cfg(any(feature = "openblas-system", feature = "openblas-static"))]
extern crate openblas_src as _src;
#[cfg(any(feature = "netlib-system", feature = "netlib-static"))]
extern crate netlib_src as _src;
pub mod alloc;
pub mod cholesky;
pub mod eig;
pub mod eigh;
pub mod eigh_generalized;
pub mod error;
pub mod flags;
pub mod layout;
pub mod least_squares;
pub mod opnorm;
pub mod qr;
pub mod rcond;
pub mod solve;
pub mod solveh;
pub mod svd;
pub mod svddc;
pub mod triangular;
pub mod tridiagonal;
pub use self::flags::*;
pub use self::least_squares::LeastSquaresOwned;
pub use self::svd::{SvdOwned, SvdRef};
pub use self::tridiagonal::{LUFactorizedTridiagonal, Tridiagonal};
use self::{alloc::*, error::*, layout::*};
use cauchy::*;
use std::mem::MaybeUninit;
pub type Pivot = Vec<i32>;
#[cfg_attr(doc, katexit::katexit)]
/// Trait for primitive types which implements LAPACK subroutines
pub trait Lapack: Scalar {
/// Compute right eigenvalue and eigenvectors for a general matrix
fn eig(
calc_v: bool,
l: MatrixLayout,
a: &mut [Self],
) -> Result<(Vec<Self::Complex>, Vec<Self::Complex>)>;
/// Compute right eigenvalue and eigenvectors for a symmetric or Hermitian matrix
fn eigh(
calc_eigenvec: bool,
layout: MatrixLayout,
uplo: UPLO,
a: &mut [Self],
) -> Result<Vec<Self::Real>>;
/// Compute right eigenvalue and eigenvectors for a symmetric or Hermitian matrix
fn eigh_generalized(
calc_eigenvec: bool,
layout: MatrixLayout,
uplo: UPLO,
a: &mut [Self],
b: &mut [Self],
) -> Result<Vec<Self::Real>>;
/// Execute Householder reflection as the first step of QR-decomposition
///
/// For C-continuous array,
/// this will call LQ-decomposition of the transposed matrix $ A^T = LQ^T $
fn householder(l: MatrixLayout, a: &mut [Self]) -> Result<Vec<Self>>;
/// Reconstruct Q-matrix from Householder-reflectors
fn q(l: MatrixLayout, a: &mut [Self], tau: &[Self]) -> Result<()>;
/// Execute QR-decomposition at once
fn qr(l: MatrixLayout, a: &mut [Self]) -> Result<Vec<Self>>;
/// Compute singular-value decomposition (SVD)
fn svd(l: MatrixLayout, calc_u: bool, calc_vt: bool, a: &mut [Self]) -> Result<SvdOwned<Self>>;
/// Compute singular value decomposition (SVD) with divide-and-conquer algorithm
fn svddc(layout: MatrixLayout, jobz: JobSvd, a: &mut [Self]) -> Result<SvdOwned<Self>>;
/// Compute a vector $x$ which minimizes Euclidian norm $\| Ax - b\|$
/// for a given matrix $A$ and a vector $b$.
fn least_squares(
a_layout: MatrixLayout,
a: &mut [Self],
b: &mut [Self],
) -> Result<LeastSquaresOwned<Self>>;
/// Solve least square problems $\argmin_X \| AX - B\|$
fn least_squares_nrhs(
a_layout: MatrixLayout,
a: &mut [Self],
b_layout: MatrixLayout,
b: &mut [Self],
) -> Result<LeastSquaresOwned<Self>>;
/// Computes the LU decomposition of a general $m \times n$ matrix
/// with partial pivoting with row interchanges.
///
/// For a given matrix $A$, LU decomposition is described as $A = PLU$ where:
///
/// - $L$ is lower matrix
/// - $U$ is upper matrix
/// - $P$ is permutation matrix represented by [Pivot]
///
/// This is designed as two step computation according to LAPACK API:
///
/// 1. Factorize input matrix $A$ into $L$, $U$, and $P$.
/// 2. Solve linear equation $Ax = b$ by [Lapack::solve]
/// or compute inverse matrix $A^{-1}$ by [Lapack::inv] using the output of LU decomposition.
///
/// Output
/// -------
/// - $U$ and $L$ are stored in `a` after LU decomposition has succeeded.
/// - $P$ is returned as [Pivot]
///
/// Error
/// ------
/// - if the matrix is singular
/// - On this case, `return_code` in [Error::LapackComputationalFailure] means
/// `return_code`-th diagonal element of $U$ becomes zero.
///
fn lu(l: MatrixLayout, a: &mut [Self]) -> Result<Pivot>;
/// Compute inverse matrix $A^{-1}$ from the output of LU-decomposition
fn inv(l: MatrixLayout, a: &mut [Self], p: &Pivot) -> Result<()>;
/// Solve linear equations $Ax = b$ using the output of LU-decomposition
fn solve(l: MatrixLayout, t: Transpose, a: &[Self], p: &Pivot, b: &mut [Self]) -> Result<()>;
/// Factorize symmetric/Hermitian matrix using Bunch-Kaufman diagonal pivoting method
///
/// For a given symmetric matrix $A$,
/// this method factorizes $A = U^T D U$ or $A = L D L^T$ where
///
/// - $U$ (or $L$) are is a product of permutation and unit upper (lower) triangular matrices
/// - $D$ is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
///
/// This takes two-step approach based in LAPACK:
///
/// 1. Factorize given matrix $A$ into upper ($U$) or lower ($L$) form with diagonal matrix $D$
/// 2. Then solve linear equation $Ax = b$, and/or calculate inverse matrix $A^{-1}$
///
fn bk(l: MatrixLayout, uplo: UPLO, a: &mut [Self]) -> Result<Pivot>;
/// Compute inverse matrix $A^{-1}$ using the result of [Lapack::bk]
fn invh(l: MatrixLayout, uplo: UPLO, a: &mut [Self], ipiv: &Pivot) -> Result<()>;
/// Solve symmetric/Hermitian linear equation $Ax = b$ using the result of [Lapack::bk]
fn solveh(l: MatrixLayout, uplo: UPLO, a: &[Self], ipiv: &Pivot, b: &mut [Self]) -> Result<()>;
/// Solve symmetric/Hermitian positive-definite linear equations using Cholesky decomposition
///
/// For a given positive definite matrix $A$,
/// Cholesky decomposition is described as $A = U^T U$ or $A = LL^T$ where
///
/// - $L$ is lower matrix
/// - $U$ is upper matrix
///
/// This is designed as two step computation according to LAPACK API
///
/// 1. Factorize input matrix $A$ into $L$ or $U$
/// 2. Solve linear equation $Ax = b$ by [Lapack::solve_cholesky]
/// or compute inverse matrix $A^{-1}$ by [Lapack::inv_cholesky]
///
fn cholesky(l: MatrixLayout, uplo: UPLO, a: &mut [Self]) -> Result<()>;
/// Compute inverse matrix $A^{-1}$ using $U$ or $L$ calculated by [Lapack::cholesky]
fn inv_cholesky(l: MatrixLayout, uplo: UPLO, a: &mut [Self]) -> Result<()>;
/// Solve linear equation $Ax = b$ using $U$ or $L$ calculated by [Lapack::cholesky]
fn solve_cholesky(l: MatrixLayout, uplo: UPLO, a: &[Self], b: &mut [Self]) -> Result<()>;
/// Estimates the the reciprocal of the condition number of the matrix in 1-norm.
///
/// `anorm` should be the 1-norm of the matrix `a`.
fn rcond(l: MatrixLayout, a: &[Self], anorm: Self::Real) -> Result<Self::Real>;
/// Compute norm of matrices
///
/// For a $n \times m$ matrix
/// $$
/// A = \begin{pmatrix}
/// a_{11} & \cdots & a_{1m} \\\\
/// \vdots & \ddots & \vdots \\\\
/// a_{n1} & \cdots & a_{nm}
/// \end{pmatrix}
/// $$
/// LAPACK can compute three types of norms:
///
/// - Operator norm based on 1-norm for its domain linear space:
/// $$
/// \Vert A \Vert_1 = \sup_{\Vert x \Vert_1 = 1} \Vert Ax \Vert_1
/// = \max_{1 \le j \le m } \sum_{i=1}^n |a_{ij}|
/// $$
/// where
/// $\Vert x\Vert_1 = \sum_{j=1}^m |x_j|$
/// is 1-norm for a vector $x$.
///
/// - Operator norm based on $\infty$-norm for its domain linear space:
/// $$
/// \Vert A \Vert_\infty = \sup_{\Vert x \Vert_\infty = 1} \Vert Ax \Vert_\infty
/// = \max_{1 \le i \le n } \sum_{j=1}^m |a_{ij}|
/// $$
/// where
/// $\Vert x\Vert_\infty = \max_{j=1}^m |x_j|$
/// is $\infty$-norm for a vector $x$.
///
/// - Frobenious norm
/// $$
/// \Vert A \Vert_F = \sqrt{\mathrm{Tr} \left(AA^\dagger\right)} = \sqrt{\sum_{i=1}^n \sum_{j=1}^m |a_{ij}|^2}
/// $$
///
fn opnorm(t: NormType, l: MatrixLayout, a: &[Self]) -> Self::Real;
fn solve_triangular(
al: MatrixLayout,
bl: MatrixLayout,
uplo: UPLO,
d: Diag,
a: &[Self],
b: &mut [Self],
) -> Result<()>;
/// Computes the LU factorization of a tridiagonal `m x n` matrix `a` using
/// partial pivoting with row interchanges.
fn lu_tridiagonal(a: Tridiagonal<Self>) -> Result<LUFactorizedTridiagonal<Self>>;
fn rcond_tridiagonal(lu: &LUFactorizedTridiagonal<Self>) -> Result<Self::Real>;
fn solve_tridiagonal(
lu: &LUFactorizedTridiagonal<Self>,
bl: MatrixLayout,
t: Transpose,
b: &mut [Self],
) -> Result<()>;
}
macro_rules! impl_lapack {
($s:ty) => {
impl Lapack for $s {
fn eig(
calc_v: bool,
l: MatrixLayout,
a: &mut [Self],
) -> Result<(Vec<Self::Complex>, Vec<Self::Complex>)> {
use eig::*;
let work = EigWork::<$s>::new(calc_v, l)?;
let EigOwned { eigs, vr, vl } = work.eval(a)?;
Ok((eigs, vr.or(vl).unwrap_or_default()))
}
fn eigh(
calc_eigenvec: bool,
layout: MatrixLayout,
uplo: UPLO,
a: &mut [Self],
) -> Result<Vec<Self::Real>> {
use eigh::*;
let work = EighWork::<$s>::new(calc_eigenvec, layout)?;
work.eval(uplo, a)
}
fn eigh_generalized(
calc_eigenvec: bool,
layout: MatrixLayout,
uplo: UPLO,
a: &mut [Self],
b: &mut [Self],
) -> Result<Vec<Self::Real>> {
use eigh_generalized::*;
let work = EighGeneralizedWork::<$s>::new(calc_eigenvec, layout)?;
work.eval(uplo, a, b)
}
fn householder(l: MatrixLayout, a: &mut [Self]) -> Result<Vec<Self>> {
use qr::*;
let work = HouseholderWork::<$s>::new(l)?;
work.eval(a)
}
fn q(l: MatrixLayout, a: &mut [Self], tau: &[Self]) -> Result<()> {
use qr::*;
let mut work = QWork::<$s>::new(l)?;
work.calc(a, tau)?;
Ok(())
}
fn qr(l: MatrixLayout, a: &mut [Self]) -> Result<Vec<Self>> {
let tau = Self::householder(l, a)?;
let r = Vec::from(&*a);
Self::q(l, a, &tau)?;
Ok(r)
}
fn svd(
l: MatrixLayout,
calc_u: bool,
calc_vt: bool,
a: &mut [Self],
) -> Result<SvdOwned<Self>> {
use svd::*;
let work = SvdWork::<$s>::new(l, calc_u, calc_vt)?;
work.eval(a)
}
fn svddc(layout: MatrixLayout, jobz: JobSvd, a: &mut [Self]) -> Result<SvdOwned<Self>> {
use svddc::*;
let work = SvdDcWork::<$s>::new(layout, jobz)?;
work.eval(a)
}
fn least_squares(
l: MatrixLayout,
a: &mut [Self],
b: &mut [Self],
) -> Result<LeastSquaresOwned<Self>> {
let b_layout = l.resized(b.len() as i32, 1);
Self::least_squares_nrhs(l, a, b_layout, b)
}
fn least_squares_nrhs(
a_layout: MatrixLayout,
a: &mut [Self],
b_layout: MatrixLayout,
b: &mut [Self],
) -> Result<LeastSquaresOwned<Self>> {
use least_squares::*;
let work = LeastSquaresWork::<$s>::new(a_layout, b_layout)?;
work.eval(a, b)
}
fn lu(l: MatrixLayout, a: &mut [Self]) -> Result<Pivot> {
use solve::*;
LuImpl::lu(l, a)
}
fn inv(l: MatrixLayout, a: &mut [Self], p: &Pivot) -> Result<()> {
use solve::*;
let mut work = InvWork::<$s>::new(l)?;
work.calc(a, p)?;
Ok(())
}
fn solve(
l: MatrixLayout,
t: Transpose,
a: &[Self],
p: &Pivot,
b: &mut [Self],
) -> Result<()> {
use solve::*;
SolveImpl::solve(l, t, a, p, b)
}
fn bk(l: MatrixLayout, uplo: UPLO, a: &mut [Self]) -> Result<Pivot> {
use solveh::*;
let work = BkWork::<$s>::new(l)?;
work.eval(uplo, a)
}
fn invh(l: MatrixLayout, uplo: UPLO, a: &mut [Self], ipiv: &Pivot) -> Result<()> {
use solveh::*;
let mut work = InvhWork::<$s>::new(l)?;
work.calc(uplo, a, ipiv)
}
fn solveh(
l: MatrixLayout,
uplo: UPLO,
a: &[Self],
ipiv: &Pivot,
b: &mut [Self],
) -> Result<()> {
use solveh::*;
SolvehImpl::solveh(l, uplo, a, ipiv, b)
}
fn cholesky(l: MatrixLayout, uplo: UPLO, a: &mut [Self]) -> Result<()> {
use cholesky::*;
CholeskyImpl::cholesky(l, uplo, a)
}
fn inv_cholesky(l: MatrixLayout, uplo: UPLO, a: &mut [Self]) -> Result<()> {
use cholesky::*;
InvCholeskyImpl::inv_cholesky(l, uplo, a)
}
fn solve_cholesky(
l: MatrixLayout,
uplo: UPLO,
a: &[Self],
b: &mut [Self],
) -> Result<()> {
use cholesky::*;
SolveCholeskyImpl::solve_cholesky(l, uplo, a, b)
}
fn rcond(l: MatrixLayout, a: &[Self], anorm: Self::Real) -> Result<Self::Real> {
use rcond::*;
let mut work = RcondWork::<$s>::new(l);
work.calc(a, anorm)
}
fn opnorm(t: NormType, l: MatrixLayout, a: &[Self]) -> Self::Real {
use opnorm::*;
let mut work = OperatorNormWork::<$s>::new(t, l);
work.calc(a)
}
fn solve_triangular(
al: MatrixLayout,
bl: MatrixLayout,
uplo: UPLO,
d: Diag,
a: &[Self],
b: &mut [Self],
) -> Result<()> {
use triangular::*;
SolveTriangularImpl::solve_triangular(al, bl, uplo, d, a, b)
}
fn lu_tridiagonal(a: Tridiagonal<Self>) -> Result<LUFactorizedTridiagonal<Self>> {
use tridiagonal::*;
let work = LuTridiagonalWork::<$s>::new(a.l);
work.eval(a)
}
fn rcond_tridiagonal(lu: &LUFactorizedTridiagonal<Self>) -> Result<Self::Real> {
use tridiagonal::*;
let mut work = RcondTridiagonalWork::<$s>::new(lu.a.l);
work.calc(lu)
}
fn solve_tridiagonal(
lu: &LUFactorizedTridiagonal<Self>,
bl: MatrixLayout,
t: Transpose,
b: &mut [Self],
) -> Result<()> {
use tridiagonal::*;
SolveTridiagonalImpl::solve_tridiagonal(lu, bl, t, b)
}
}
};
}
impl_lapack!(c64);
impl_lapack!(c32);
impl_lapack!(f64);
impl_lapack!(f32);