lax/solve.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
//! Solve linear equations using LU-decomposition
use crate::{error::*, layout::MatrixLayout, *};
use cauchy::*;
use num_traits::{ToPrimitive, Zero};
/// Helper trait to abstract `*getrf` LAPACK routines for implementing [Lapack::lu]
///
/// LAPACK correspondance
/// ----------------------
///
/// | f32 | f64 | c32 | c64 |
/// |:-------|:-------|:-------|:-------|
/// | sgetrf | dgetrf | cgetrf | zgetrf |
///
pub trait LuImpl: Scalar {
fn lu(l: MatrixLayout, a: &mut [Self]) -> Result<Pivot>;
}
macro_rules! impl_lu {
($scalar:ty, $getrf:path) => {
impl LuImpl for $scalar {
fn lu(l: MatrixLayout, a: &mut [Self]) -> Result<Pivot> {
let (row, col) = l.size();
assert_eq!(a.len() as i32, row * col);
if row == 0 || col == 0 {
// Do nothing for empty matrix
return Ok(Vec::new());
}
let k = ::std::cmp::min(row, col);
let mut ipiv = vec_uninit(k as usize);
let mut info = 0;
unsafe {
$getrf(
&l.lda(),
&l.len(),
AsPtr::as_mut_ptr(a),
&l.lda(),
AsPtr::as_mut_ptr(&mut ipiv),
&mut info,
)
};
info.as_lapack_result()?;
let ipiv = unsafe { ipiv.assume_init() };
Ok(ipiv)
}
}
};
}
impl_lu!(c64, lapack_sys::zgetrf_);
impl_lu!(c32, lapack_sys::cgetrf_);
impl_lu!(f64, lapack_sys::dgetrf_);
impl_lu!(f32, lapack_sys::sgetrf_);
#[cfg_attr(doc, katexit::katexit)]
/// Helper trait to abstract `*getrs` LAPACK routines for implementing [Lapack::solve]
///
/// If the array has C layout, then it needs to be handled
/// specially, since LAPACK expects a Fortran-layout array.
/// Reinterpreting a C layout array as Fortran layout is
/// equivalent to transposing it. So, we can handle the "no
/// transpose" and "transpose" cases by swapping to "transpose"
/// or "no transpose", respectively. For the "Hermite" case, we
/// can take advantage of the following:
///
/// $$
/// \begin{align*}
/// A^H x &= b \\\\
/// \Leftrightarrow \overline{A^T} x &= b \\\\
/// \Leftrightarrow \overline{\overline{A^T} x} &= \overline{b} \\\\
/// \Leftrightarrow \overline{\overline{A^T}} \overline{x} &= \overline{b} \\\\
/// \Leftrightarrow A^T \overline{x} &= \overline{b}
/// \end{align*}
/// $$
///
/// So, we can handle this case by switching to "no transpose"
/// (which is equivalent to transposing the array since it will
/// be reinterpreted as Fortran layout) and applying the
/// elementwise conjugate to `x` and `b`.
///
pub trait SolveImpl: Scalar {
/// LAPACK correspondance
/// ----------------------
///
/// | f32 | f64 | c32 | c64 |
/// |:-------|:-------|:-------|:-------|
/// | sgetrs | dgetrs | cgetrs | zgetrs |
///
fn solve(l: MatrixLayout, t: Transpose, a: &[Self], p: &Pivot, b: &mut [Self]) -> Result<()>;
}
macro_rules! impl_solve {
($scalar:ty, $getrs:path) => {
impl SolveImpl for $scalar {
fn solve(
l: MatrixLayout,
t: Transpose,
a: &[Self],
ipiv: &Pivot,
b: &mut [Self],
) -> Result<()> {
let (t, conj) = match l {
MatrixLayout::C { .. } => match t {
Transpose::No => (Transpose::Transpose, false),
Transpose::Transpose => (Transpose::No, false),
Transpose::Hermite => (Transpose::No, true),
},
MatrixLayout::F { .. } => (t, false),
};
let (n, _) = l.size();
let nrhs = 1;
let ldb = l.lda();
let mut info = 0;
if conj {
for b_elem in &mut *b {
*b_elem = b_elem.conj();
}
}
unsafe {
$getrs(
t.as_ptr(),
&n,
&nrhs,
AsPtr::as_ptr(a),
&l.lda(),
ipiv.as_ptr(),
AsPtr::as_mut_ptr(b),
&ldb,
&mut info,
)
};
if conj {
for b_elem in &mut *b {
*b_elem = b_elem.conj();
}
}
info.as_lapack_result()?;
Ok(())
}
}
};
} // impl_solve!
impl_solve!(f64, lapack_sys::dgetrs_);
impl_solve!(f32, lapack_sys::sgetrs_);
impl_solve!(c64, lapack_sys::zgetrs_);
impl_solve!(c32, lapack_sys::cgetrs_);
/// Working memory for computing inverse matrix
pub struct InvWork<T: Scalar> {
pub layout: MatrixLayout,
pub work: Vec<MaybeUninit<T>>,
}
/// Helper trait to abstract `*getri` LAPACK rotuines for implementing [Lapack::inv]
///
/// LAPACK correspondance
/// ----------------------
///
/// | f32 | f64 | c32 | c64 |
/// |:-------|:-------|:-------|:-------|
/// | sgetri | dgetri | cgetri | zgetri |
///
pub trait InvWorkImpl: Sized {
type Elem: Scalar;
fn new(layout: MatrixLayout) -> Result<Self>;
fn calc(&mut self, a: &mut [Self::Elem], p: &Pivot) -> Result<()>;
}
macro_rules! impl_inv_work {
($s:ty, $tri:path) => {
impl InvWorkImpl for InvWork<$s> {
type Elem = $s;
fn new(layout: MatrixLayout) -> Result<Self> {
let (n, _) = layout.size();
let mut info = 0;
let mut work_size = [Self::Elem::zero()];
unsafe {
$tri(
&n,
std::ptr::null_mut(),
&layout.lda(),
std::ptr::null(),
AsPtr::as_mut_ptr(&mut work_size),
&(-1),
&mut info,
)
};
info.as_lapack_result()?;
let lwork = work_size[0].to_usize().unwrap();
let work = vec_uninit(lwork);
Ok(InvWork { layout, work })
}
fn calc(&mut self, a: &mut [Self::Elem], ipiv: &Pivot) -> Result<()> {
if self.layout.len() == 0 {
return Ok(());
}
let lwork = self.work.len().to_i32().unwrap();
let mut info = 0;
unsafe {
$tri(
&self.layout.len(),
AsPtr::as_mut_ptr(a),
&self.layout.lda(),
ipiv.as_ptr(),
AsPtr::as_mut_ptr(&mut self.work),
&lwork,
&mut info,
)
};
info.as_lapack_result()?;
Ok(())
}
}
};
}
impl_inv_work!(c64, lapack_sys::zgetri_);
impl_inv_work!(c32, lapack_sys::cgetri_);
impl_inv_work!(f64, lapack_sys::dgetri_);
impl_inv_work!(f32, lapack_sys::sgetri_);