lax/
solveh.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
//! Factorize symmetric/Hermitian matrix using [Bunch-Kaufman diagonal pivoting method][BK]
//!
//! [BK]: https://doi.org/10.2307/2005787
//!

use crate::{error::*, layout::MatrixLayout, *};
use cauchy::*;
use num_traits::{ToPrimitive, Zero};

pub struct BkWork<T: Scalar> {
    pub layout: MatrixLayout,
    pub work: Vec<MaybeUninit<T>>,
    pub ipiv: Vec<MaybeUninit<i32>>,
}

/// Factorize symmetric/Hermitian matrix using Bunch-Kaufman diagonal pivoting method
///
/// LAPACK correspondance
/// ----------------------
///
/// | f32    | f64    | c32    | c64    |
/// |:-------|:-------|:-------|:-------|
/// | ssytrf | dsytrf | chetrf | zhetrf |
///
pub trait BkWorkImpl: Sized {
    type Elem: Scalar;
    fn new(l: MatrixLayout) -> Result<Self>;
    fn calc(&mut self, uplo: UPLO, a: &mut [Self::Elem]) -> Result<&[i32]>;
    fn eval(self, uplo: UPLO, a: &mut [Self::Elem]) -> Result<Pivot>;
}

macro_rules! impl_bk_work {
    ($s:ty, $trf:path) => {
        impl BkWorkImpl for BkWork<$s> {
            type Elem = $s;

            fn new(layout: MatrixLayout) -> Result<Self> {
                let (n, _) = layout.size();
                let ipiv = vec_uninit(n as usize);
                let mut info = 0;
                let mut work_size = [Self::Elem::zero()];
                unsafe {
                    $trf(
                        UPLO::Upper.as_ptr(),
                        &n,
                        std::ptr::null_mut(),
                        &layout.lda(),
                        std::ptr::null_mut(),
                        AsPtr::as_mut_ptr(&mut work_size),
                        &(-1),
                        &mut info,
                    )
                };
                info.as_lapack_result()?;
                let lwork = work_size[0].to_usize().unwrap();
                let work = vec_uninit(lwork);
                Ok(BkWork { layout, work, ipiv })
            }

            fn calc(&mut self, uplo: UPLO, a: &mut [Self::Elem]) -> Result<&[i32]> {
                let (n, _) = self.layout.size();
                let lwork = self.work.len().to_i32().unwrap();
                if lwork == 0 {
                    return Ok(&[]);
                }
                let mut info = 0;
                unsafe {
                    $trf(
                        uplo.as_ptr(),
                        &n,
                        AsPtr::as_mut_ptr(a),
                        &self.layout.lda(),
                        AsPtr::as_mut_ptr(&mut self.ipiv),
                        AsPtr::as_mut_ptr(&mut self.work),
                        &lwork,
                        &mut info,
                    )
                };
                info.as_lapack_result()?;
                Ok(unsafe { self.ipiv.slice_assume_init_ref() })
            }

            fn eval(mut self, uplo: UPLO, a: &mut [Self::Elem]) -> Result<Pivot> {
                let _ref = self.calc(uplo, a)?;
                Ok(unsafe { self.ipiv.assume_init() })
            }
        }
    };
}
impl_bk_work!(c64, lapack_sys::zhetrf_);
impl_bk_work!(c32, lapack_sys::chetrf_);
impl_bk_work!(f64, lapack_sys::dsytrf_);
impl_bk_work!(f32, lapack_sys::ssytrf_);

pub struct InvhWork<T: Scalar> {
    pub layout: MatrixLayout,
    pub work: Vec<MaybeUninit<T>>,
}

/// Compute inverse matrix of symmetric/Hermitian matrix
///
/// LAPACK correspondance
/// ----------------------
///
/// | f32    | f64    | c32    | c64    |
/// |:-------|:-------|:-------|:-------|
/// | ssytri | dsytri | chetri | zhetri |
///
pub trait InvhWorkImpl: Sized {
    type Elem;
    fn new(layout: MatrixLayout) -> Result<Self>;
    fn calc(&mut self, uplo: UPLO, a: &mut [Self::Elem], ipiv: &Pivot) -> Result<()>;
}

macro_rules! impl_invh_work {
    ($s:ty, $tri:path) => {
        impl InvhWorkImpl for InvhWork<$s> {
            type Elem = $s;

            fn new(layout: MatrixLayout) -> Result<Self> {
                let (n, _) = layout.size();
                let work = vec_uninit(n as usize);
                Ok(InvhWork { layout, work })
            }

            fn calc(&mut self, uplo: UPLO, a: &mut [Self::Elem], ipiv: &Pivot) -> Result<()> {
                let (n, _) = self.layout.size();
                let mut info = 0;
                unsafe {
                    $tri(
                        uplo.as_ptr(),
                        &n,
                        AsPtr::as_mut_ptr(a),
                        &self.layout.lda(),
                        ipiv.as_ptr(),
                        AsPtr::as_mut_ptr(&mut self.work),
                        &mut info,
                    )
                };
                info.as_lapack_result()?;
                Ok(())
            }
        }
    };
}
impl_invh_work!(c64, lapack_sys::zhetri_);
impl_invh_work!(c32, lapack_sys::chetri_);
impl_invh_work!(f64, lapack_sys::dsytri_);
impl_invh_work!(f32, lapack_sys::ssytri_);

/// Solve symmetric/Hermitian linear equation
///
/// LAPACK correspondance
/// ----------------------
///
/// | f32    | f64    | c32    | c64    |
/// |:-------|:-------|:-------|:-------|
/// | ssytrs | dsytrs | chetrs | zhetrs |
///
pub trait SolvehImpl: Scalar {
    fn solveh(l: MatrixLayout, uplo: UPLO, a: &[Self], ipiv: &Pivot, b: &mut [Self]) -> Result<()>;
}

macro_rules! impl_solveh_ {
    ($s:ty, $trs:path) => {
        impl SolvehImpl for $s {
            fn solveh(
                l: MatrixLayout,
                uplo: UPLO,
                a: &[Self],
                ipiv: &Pivot,
                b: &mut [Self],
            ) -> Result<()> {
                let (n, _) = l.size();
                let mut info = 0;
                unsafe {
                    $trs(
                        uplo.as_ptr(),
                        &n,
                        &1,
                        AsPtr::as_ptr(a),
                        &l.lda(),
                        ipiv.as_ptr(),
                        AsPtr::as_mut_ptr(b),
                        &n,
                        &mut info,
                    )
                };
                info.as_lapack_result()?;
                Ok(())
            }
        }
    };
}

impl_solveh_!(c64, lapack_sys::zhetrs_);
impl_solveh_!(c32, lapack_sys::chetrs_);
impl_solveh_!(f64, lapack_sys::dsytrs_);
impl_solveh_!(f32, lapack_sys::ssytrs_);