lax/solveh.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
//! Factorize symmetric/Hermitian matrix using [Bunch-Kaufman diagonal pivoting method][BK]
//!
//! [BK]: https://doi.org/10.2307/2005787
//!
use crate::{error::*, layout::MatrixLayout, *};
use cauchy::*;
use num_traits::{ToPrimitive, Zero};
pub struct BkWork<T: Scalar> {
pub layout: MatrixLayout,
pub work: Vec<MaybeUninit<T>>,
pub ipiv: Vec<MaybeUninit<i32>>,
}
/// Factorize symmetric/Hermitian matrix using Bunch-Kaufman diagonal pivoting method
///
/// LAPACK correspondance
/// ----------------------
///
/// | f32 | f64 | c32 | c64 |
/// |:-------|:-------|:-------|:-------|
/// | ssytrf | dsytrf | chetrf | zhetrf |
///
pub trait BkWorkImpl: Sized {
type Elem: Scalar;
fn new(l: MatrixLayout) -> Result<Self>;
fn calc(&mut self, uplo: UPLO, a: &mut [Self::Elem]) -> Result<&[i32]>;
fn eval(self, uplo: UPLO, a: &mut [Self::Elem]) -> Result<Pivot>;
}
macro_rules! impl_bk_work {
($s:ty, $trf:path) => {
impl BkWorkImpl for BkWork<$s> {
type Elem = $s;
fn new(layout: MatrixLayout) -> Result<Self> {
let (n, _) = layout.size();
let ipiv = vec_uninit(n as usize);
let mut info = 0;
let mut work_size = [Self::Elem::zero()];
unsafe {
$trf(
UPLO::Upper.as_ptr(),
&n,
std::ptr::null_mut(),
&layout.lda(),
std::ptr::null_mut(),
AsPtr::as_mut_ptr(&mut work_size),
&(-1),
&mut info,
)
};
info.as_lapack_result()?;
let lwork = work_size[0].to_usize().unwrap();
let work = vec_uninit(lwork);
Ok(BkWork { layout, work, ipiv })
}
fn calc(&mut self, uplo: UPLO, a: &mut [Self::Elem]) -> Result<&[i32]> {
let (n, _) = self.layout.size();
let lwork = self.work.len().to_i32().unwrap();
if lwork == 0 {
return Ok(&[]);
}
let mut info = 0;
unsafe {
$trf(
uplo.as_ptr(),
&n,
AsPtr::as_mut_ptr(a),
&self.layout.lda(),
AsPtr::as_mut_ptr(&mut self.ipiv),
AsPtr::as_mut_ptr(&mut self.work),
&lwork,
&mut info,
)
};
info.as_lapack_result()?;
Ok(unsafe { self.ipiv.slice_assume_init_ref() })
}
fn eval(mut self, uplo: UPLO, a: &mut [Self::Elem]) -> Result<Pivot> {
let _ref = self.calc(uplo, a)?;
Ok(unsafe { self.ipiv.assume_init() })
}
}
};
}
impl_bk_work!(c64, lapack_sys::zhetrf_);
impl_bk_work!(c32, lapack_sys::chetrf_);
impl_bk_work!(f64, lapack_sys::dsytrf_);
impl_bk_work!(f32, lapack_sys::ssytrf_);
pub struct InvhWork<T: Scalar> {
pub layout: MatrixLayout,
pub work: Vec<MaybeUninit<T>>,
}
/// Compute inverse matrix of symmetric/Hermitian matrix
///
/// LAPACK correspondance
/// ----------------------
///
/// | f32 | f64 | c32 | c64 |
/// |:-------|:-------|:-------|:-------|
/// | ssytri | dsytri | chetri | zhetri |
///
pub trait InvhWorkImpl: Sized {
type Elem;
fn new(layout: MatrixLayout) -> Result<Self>;
fn calc(&mut self, uplo: UPLO, a: &mut [Self::Elem], ipiv: &Pivot) -> Result<()>;
}
macro_rules! impl_invh_work {
($s:ty, $tri:path) => {
impl InvhWorkImpl for InvhWork<$s> {
type Elem = $s;
fn new(layout: MatrixLayout) -> Result<Self> {
let (n, _) = layout.size();
let work = vec_uninit(n as usize);
Ok(InvhWork { layout, work })
}
fn calc(&mut self, uplo: UPLO, a: &mut [Self::Elem], ipiv: &Pivot) -> Result<()> {
let (n, _) = self.layout.size();
let mut info = 0;
unsafe {
$tri(
uplo.as_ptr(),
&n,
AsPtr::as_mut_ptr(a),
&self.layout.lda(),
ipiv.as_ptr(),
AsPtr::as_mut_ptr(&mut self.work),
&mut info,
)
};
info.as_lapack_result()?;
Ok(())
}
}
};
}
impl_invh_work!(c64, lapack_sys::zhetri_);
impl_invh_work!(c32, lapack_sys::chetri_);
impl_invh_work!(f64, lapack_sys::dsytri_);
impl_invh_work!(f32, lapack_sys::ssytri_);
/// Solve symmetric/Hermitian linear equation
///
/// LAPACK correspondance
/// ----------------------
///
/// | f32 | f64 | c32 | c64 |
/// |:-------|:-------|:-------|:-------|
/// | ssytrs | dsytrs | chetrs | zhetrs |
///
pub trait SolvehImpl: Scalar {
fn solveh(l: MatrixLayout, uplo: UPLO, a: &[Self], ipiv: &Pivot, b: &mut [Self]) -> Result<()>;
}
macro_rules! impl_solveh_ {
($s:ty, $trs:path) => {
impl SolvehImpl for $s {
fn solveh(
l: MatrixLayout,
uplo: UPLO,
a: &[Self],
ipiv: &Pivot,
b: &mut [Self],
) -> Result<()> {
let (n, _) = l.size();
let mut info = 0;
unsafe {
$trs(
uplo.as_ptr(),
&n,
&1,
AsPtr::as_ptr(a),
&l.lda(),
ipiv.as_ptr(),
AsPtr::as_mut_ptr(b),
&n,
&mut info,
)
};
info.as_lapack_result()?;
Ok(())
}
}
};
}
impl_solveh_!(c64, lapack_sys::zhetrs_);
impl_solveh_!(c32, lapack_sys::chetrs_);
impl_solveh_!(f64, lapack_sys::dsytrs_);
impl_solveh_!(f32, lapack_sys::ssytrs_);