ndarray_linalg/
cholesky.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
//! Cholesky decomposition of Hermitian (or real symmetric) positive definite matrices
//!
//! See the [Wikipedia page about Cholesky
//! decomposition](https://en.wikipedia.org/wiki/Cholesky_decomposition) for
//! more information.
//!
//! # Example
//!
//! Using the Cholesky decomposition of `A` for various operations, where `A`
//! is a Hermitian (or real symmetric) positive definite matrix:
//!
//! ```
//! #[macro_use]
//! extern crate ndarray;
//! extern crate ndarray_linalg;
//!
//! use ndarray::prelude::*;
//! use ndarray_linalg::cholesky::*;
//! # fn main() {
//!
//! let a: Array2<f64> = array![
//!     [  4.,  12., -16.],
//!     [ 12.,  37., -43.],
//!     [-16., -43.,  98.]
//! ];
//!
//! // Obtain `L`
//! let lower = a.cholesky(UPLO::Lower).unwrap();
//! assert!(lower.abs_diff_eq(&array![
//!     [ 2., 0., 0.],
//!     [ 6., 1., 0.],
//!     [-8., 5., 3.]
//! ], 1e-9));
//!
//! // Find the determinant of `A`
//! let det = a.detc().unwrap();
//! assert!((det - 36.).abs() < 1e-9);
//!
//! // Solve `A * x = b`
//! let b = array![4., 13., -11.];
//! let x = a.solvec(&b).unwrap();
//! assert!(x.abs_diff_eq(&array![-2., 1., 0.], 1e-9));
//! # }
//! ```

use ndarray::*;
use num_traits::Float;

use crate::convert::*;
use crate::error::*;
use crate::layout::*;
use crate::triangular::IntoTriangular;
use crate::types::*;

pub use lax::UPLO;

/// Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix
pub struct CholeskyFactorized<S: Data> {
    /// `L` from the decomposition `A = L * L^H` or `U` from the decomposition
    /// `A = U^H * U`.
    pub factor: ArrayBase<S, Ix2>,
    /// If this is `UPLO::Lower`, then `self.factor` is `L`. If this is
    /// `UPLO::Upper`, then `self.factor` is `U`.
    pub uplo: UPLO,
}

impl<A, S> CholeskyFactorized<S>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
{
    /// Returns `L` from the Cholesky decomposition `A = L * L^H`.
    ///
    /// If `self.uplo == UPLO::Lower`, then no computations need to be
    /// performed; otherwise, the conjugate transpose of `self.factor` is
    /// calculated.
    pub fn into_lower(self) -> ArrayBase<S, Ix2> {
        match self.uplo {
            UPLO::Lower => self.factor,
            UPLO::Upper => self.factor.reversed_axes().mapv_into(|elem| elem.conj()),
        }
    }

    /// Returns `U` from the Cholesky decomposition `A = U^H * U`.
    ///
    /// If `self.uplo == UPLO::Upper`, then no computations need to be
    /// performed; otherwise, the conjugate transpose of `self.factor` is
    /// calculated.
    pub fn into_upper(self) -> ArrayBase<S, Ix2> {
        match self.uplo {
            UPLO::Lower => self.factor.reversed_axes().mapv_into(|elem| elem.conj()),
            UPLO::Upper => self.factor,
        }
    }
}

impl<A, S> DeterminantC for CholeskyFactorized<S>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    type Output = <A as Scalar>::Real;

    fn detc(&self) -> Self::Output {
        Float::exp(self.ln_detc())
    }

    fn ln_detc(&self) -> Self::Output {
        self.factor
            .diag()
            .iter()
            .map(|elem| Float::ln(elem.square()))
            .sum::<Self::Output>()
    }
}

impl<A, S> DeterminantCInto for CholeskyFactorized<S>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    type Output = <A as Scalar>::Real;

    fn detc_into(self) -> Self::Output {
        self.detc()
    }

    fn ln_detc_into(self) -> Self::Output {
        self.ln_detc()
    }
}

impl<A, S> InverseC for CholeskyFactorized<S>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    type Output = Array2<A>;

    fn invc(&self) -> Result<Self::Output> {
        let f = CholeskyFactorized {
            factor: replicate(&self.factor),
            uplo: self.uplo,
        };
        f.invc_into()
    }
}

impl<A, S> InverseCInto for CholeskyFactorized<S>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
{
    type Output = ArrayBase<S, Ix2>;

    fn invc_into(self) -> Result<Self::Output> {
        let mut a = self.factor;
        A::inv_cholesky(a.square_layout()?, self.uplo, a.as_allocated_mut()?)?;
        triangular_fill_hermitian(&mut a, self.uplo);
        Ok(a)
    }
}

impl<A, S> SolveC<A> for CholeskyFactorized<S>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    fn solvec_inplace<'a, Sb>(
        &self,
        b: &'a mut ArrayBase<Sb, Ix1>,
    ) -> Result<&'a mut ArrayBase<Sb, Ix1>>
    where
        Sb: DataMut<Elem = A>,
    {
        A::solve_cholesky(
            self.factor.square_layout()?,
            self.uplo,
            self.factor.as_allocated()?,
            b.as_slice_mut().unwrap(),
        )?;
        Ok(b)
    }
}

/// Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix reference
pub trait Cholesky {
    type Output;

    /// Computes the Cholesky decomposition of the Hermitian (or real
    /// symmetric) positive definite matrix.
    ///
    /// If the argument is `UPLO::Upper`, then computes the decomposition `A =
    /// U^H * U` using the upper triangular portion of `A` and returns `U`.
    /// Otherwise, if the argument is `UPLO::Lower`, computes the decomposition
    /// `A = L * L^H` using the lower triangular portion of `A` and returns
    /// `L`.
    fn cholesky(&self, uplo: UPLO) -> Result<Self::Output>;
}

/// Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix
pub trait CholeskyInto {
    type Output;
    /// Computes the Cholesky decomposition of the Hermitian (or real
    /// symmetric) positive definite matrix.
    ///
    /// If the argument is `UPLO::Upper`, then computes the decomposition `A =
    /// U^H * U` using the upper triangular portion of `A` and returns `U`.
    /// Otherwise, if the argument is `UPLO::Lower`, computes the decomposition
    /// `A = L * L^H` using the lower triangular portion of `A` and returns
    /// `L`.
    fn cholesky_into(self, uplo: UPLO) -> Result<Self::Output>;
}

/// Cholesky decomposition of Hermitian (or real symmetric) positive definite mutable reference of matrix
pub trait CholeskyInplace {
    /// Computes the Cholesky decomposition of the Hermitian (or real
    /// symmetric) positive definite matrix, writing the result (`L` or `U`
    /// according to the argument) to `self` and returning it.
    ///
    /// If the argument is `UPLO::Upper`, then computes the decomposition `A =
    /// U^H * U` using the upper triangular portion of `A` and writes `U`.
    /// Otherwise, if the argument is `UPLO::Lower`, computes the decomposition
    /// `A = L * L^H` using the lower triangular portion of `A` and writes `L`.
    fn cholesky_inplace(&mut self, uplo: UPLO) -> Result<&mut Self>;
}

impl<A, S> Cholesky for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    type Output = Array2<A>;

    fn cholesky(&self, uplo: UPLO) -> Result<Array2<A>> {
        let a = replicate(self);
        a.cholesky_into(uplo)
    }
}

impl<A, S> CholeskyInto for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
{
    type Output = Self;

    fn cholesky_into(mut self, uplo: UPLO) -> Result<Self> {
        self.cholesky_inplace(uplo)?;
        Ok(self)
    }
}

impl<A, S> CholeskyInplace for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
{
    fn cholesky_inplace(&mut self, uplo: UPLO) -> Result<&mut Self> {
        A::cholesky(self.square_layout()?, uplo, self.as_allocated_mut()?)?;
        Ok(self.into_triangular(uplo))
    }
}

/// Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix reference
pub trait FactorizeC<S: Data> {
    /// Computes the Cholesky decomposition of the Hermitian (or real
    /// symmetric) positive definite matrix.
    ///
    /// If the argument is `UPLO::Upper`, then computes the decomposition `A =
    /// U^H * U` using the upper triangular portion of `A` and returns the
    /// factorization containing `U`. Otherwise, if the argument is
    /// `UPLO::Lower`, computes the decomposition `A = L * L^H` using the lower
    /// triangular portion of `A` and returns the factorization containing `L`.
    fn factorizec(&self, uplo: UPLO) -> Result<CholeskyFactorized<S>>;
}

/// Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix
pub trait FactorizeCInto<S: Data> {
    /// Computes the Cholesky decomposition of the Hermitian (or real
    /// symmetric) positive definite matrix.
    ///
    /// If the argument is `UPLO::Upper`, then computes the decomposition `A =
    /// U^H * U` using the upper triangular portion of `A` and returns the
    /// factorization containing `U`. Otherwise, if the argument is
    /// `UPLO::Lower`, computes the decomposition `A = L * L^H` using the lower
    /// triangular portion of `A` and returns the factorization containing `L`.
    fn factorizec_into(self, uplo: UPLO) -> Result<CholeskyFactorized<S>>;
}

impl<A, S> FactorizeCInto<S> for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
{
    fn factorizec_into(self, uplo: UPLO) -> Result<CholeskyFactorized<S>> {
        Ok(CholeskyFactorized {
            factor: self.cholesky_into(uplo)?,
            uplo,
        })
    }
}

impl<A, Si> FactorizeC<OwnedRepr<A>> for ArrayBase<Si, Ix2>
where
    A: Scalar + Lapack,
    Si: Data<Elem = A>,
{
    fn factorizec(&self, uplo: UPLO) -> Result<CholeskyFactorized<OwnedRepr<A>>> {
        Ok(CholeskyFactorized {
            factor: self.cholesky(uplo)?,
            uplo,
        })
    }
}

/// Solve systems of linear equations with Hermitian (or real symmetric)
/// positive definite coefficient matrices
pub trait SolveC<A: Scalar> {
    /// Solves a system of linear equations `A * x = b` with Hermitian (or real
    /// symmetric) positive definite matrix `A`, where `A` is `self`, `b` is
    /// the argument, and `x` is the successful result.
    fn solvec<S: Data<Elem = A>>(&self, b: &ArrayBase<S, Ix1>) -> Result<Array1<A>> {
        let mut b = replicate(b);
        self.solvec_inplace(&mut b)?;
        Ok(b)
    }
    /// Solves a system of linear equations `A * x = b` with Hermitian (or real
    /// symmetric) positive definite matrix `A`, where `A` is `self`, `b` is
    /// the argument, and `x` is the successful result.
    fn solvec_into<S: DataMut<Elem = A>>(
        &self,
        mut b: ArrayBase<S, Ix1>,
    ) -> Result<ArrayBase<S, Ix1>> {
        self.solvec_inplace(&mut b)?;
        Ok(b)
    }
    /// Solves a system of linear equations `A * x = b` with Hermitian (or real
    /// symmetric) positive definite matrix `A`, where `A` is `self`, `b` is
    /// the argument, and `x` is the successful result. The value of `x` is
    /// also assigned to the argument.
    fn solvec_inplace<'a, S: DataMut<Elem = A>>(
        &self,
        b: &'a mut ArrayBase<S, Ix1>,
    ) -> Result<&'a mut ArrayBase<S, Ix1>>;
}

impl<A, S> SolveC<A> for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    fn solvec_inplace<'a, Sb>(
        &self,
        b: &'a mut ArrayBase<Sb, Ix1>,
    ) -> Result<&'a mut ArrayBase<Sb, Ix1>>
    where
        Sb: DataMut<Elem = A>,
    {
        self.factorizec(UPLO::Upper)?.solvec_inplace(b)
    }
}

/// Inverse of Hermitian (or real symmetric) positive definite matrix ref
pub trait InverseC {
    type Output;
    /// Computes the inverse of the Hermitian (or real symmetric) positive
    /// definite matrix.
    fn invc(&self) -> Result<Self::Output>;
}

/// Inverse of Hermitian (or real symmetric) positive definite matrix
pub trait InverseCInto {
    type Output;
    /// Computes the inverse of the Hermitian (or real symmetric) positive
    /// definite matrix.
    fn invc_into(self) -> Result<Self::Output>;
}

impl<A, S> InverseC for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    type Output = Array2<A>;

    fn invc(&self) -> Result<Self::Output> {
        self.factorizec(UPLO::Upper)?.invc_into()
    }
}

impl<A, S> InverseCInto for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
{
    type Output = Self;

    fn invc_into(self) -> Result<Self::Output> {
        self.factorizec_into(UPLO::Upper)?.invc_into()
    }
}

/// Determinant of Hermitian (or real symmetric) positive definite matrix ref
pub trait DeterminantC {
    type Output;

    /// Computes the determinant of the Hermitian (or real symmetric) positive
    /// definite matrix.
    fn detc(&self) -> Self::Output;

    /// Computes the natural log of the determinant of the Hermitian (or real
    /// symmetric) positive definite matrix.
    ///
    /// This method is more robust than `.detc()` to very small or very large
    /// determinants since it returns the natural logarithm of the determinant
    /// rather than the determinant itself.
    fn ln_detc(&self) -> Self::Output;
}

/// Determinant of Hermitian (or real symmetric) positive definite matrix
pub trait DeterminantCInto {
    type Output;

    /// Computes the determinant of the Hermitian (or real symmetric) positive
    /// definite matrix.
    fn detc_into(self) -> Self::Output;

    /// Computes the natural log of the determinant of the Hermitian (or real
    /// symmetric) positive definite matrix.
    ///
    /// This method is more robust than `.detc_into()` to very small or very
    /// large determinants since it returns the natural logarithm of the
    /// determinant rather than the determinant itself.
    fn ln_detc_into(self) -> Self::Output;
}

impl<A, S> DeterminantC for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    type Output = Result<<A as Scalar>::Real>;

    fn detc(&self) -> Self::Output {
        Ok(Float::exp(self.ln_detc()?))
    }

    fn ln_detc(&self) -> Self::Output {
        Ok(self.factorizec(UPLO::Upper)?.ln_detc())
    }
}

impl<A, S> DeterminantCInto for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
{
    type Output = Result<<A as Scalar>::Real>;

    fn detc_into(self) -> Self::Output {
        Ok(Float::exp(self.ln_detc_into()?))
    }

    fn ln_detc_into(self) -> Self::Output {
        Ok(self.factorizec_into(UPLO::Upper)?.ln_detc_into())
    }
}