ndarray_linalg/
eigh.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
//! Eigendecomposition for Hermitian matrices.
//!
//! For a Hermitian matrix `A`, this solves the eigenvalue problem `A V = V D`
//! for `D` and `V`, where `D` is the diagonal matrix of eigenvalues in
//! ascending order and `V` is the orthonormal matrix of corresponding
//! eigenvectors.
//!
//! For a pair of Hermitian matrices `A` and `B` where `B` is also positive
//! definite, this solves the generalized eigenvalue problem `A V = B V D`,
//! where `D` is the diagonal matrix of generalized eigenvalues in ascending
//! order and `V` is the matrix of corresponding generalized eigenvectors. The
//! matrix `V` is normalized such that `V^H B V = I`.
//!
//! # Example
//!
//! Find the eigendecomposition of a Hermitian (or real symmetric) matrix.
//!
//! ```
//! use approx::assert_abs_diff_eq;
//! use ndarray::{array, Array2};
//! use ndarray_linalg::{Eigh, UPLO};
//!
//! let a: Array2<f64> = array![
//!     [2., 1.],
//!     [1., 2.],
//! ];
//! let (eigvals, eigvecs) = a.eigh(UPLO::Lower)?;
//! assert_abs_diff_eq!(eigvals, array![1., 3.]);
//! assert_abs_diff_eq!(
//!     a.dot(&eigvecs),
//!     eigvecs.dot(&Array2::from_diag(&eigvals)),
//! );
//! # Ok::<(), Box<dyn std::error::Error>>(())
//! ```

use ndarray::*;

use crate::diagonal::*;
use crate::error::*;
use crate::layout::*;
use crate::operator::LinearOperator;
use crate::types::*;
use crate::UPLO;

/// Eigenvalue decomposition of Hermite matrix reference
pub trait Eigh {
    type EigVal;
    type EigVec;
    fn eigh(&self, uplo: UPLO) -> Result<(Self::EigVal, Self::EigVec)>;
}

/// Eigenvalue decomposition of mutable reference of Hermite matrix
pub trait EighInplace {
    type EigVal;
    fn eigh_inplace(&mut self, uplo: UPLO) -> Result<(Self::EigVal, &mut Self)>;
}

/// Eigenvalue decomposition of Hermite matrix
pub trait EighInto: Sized {
    type EigVal;
    fn eigh_into(self, uplo: UPLO) -> Result<(Self::EigVal, Self)>;
}

impl<A, S> EighInto for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
{
    type EigVal = Array1<A::Real>;

    fn eigh_into(mut self, uplo: UPLO) -> Result<(Self::EigVal, Self)> {
        let (val, _) = self.eigh_inplace(uplo)?;
        Ok((val, self))
    }
}

impl<A, S, S2> EighInto for (ArrayBase<S, Ix2>, ArrayBase<S2, Ix2>)
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
    S2: DataMut<Elem = A>,
{
    type EigVal = Array1<A::Real>;

    fn eigh_into(mut self, uplo: UPLO) -> Result<(Self::EigVal, Self)> {
        let (val, _) = self.eigh_inplace(uplo)?;
        Ok((val, self))
    }
}

impl<A, S> Eigh for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    type EigVal = Array1<A::Real>;
    type EigVec = Array2<A>;

    fn eigh(&self, uplo: UPLO) -> Result<(Self::EigVal, Self::EigVec)> {
        let a = self.to_owned();
        a.eigh_into(uplo)
    }
}

impl<A, S, S2> Eigh for (ArrayBase<S, Ix2>, ArrayBase<S2, Ix2>)
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
    S2: Data<Elem = A>,
{
    type EigVal = Array1<A::Real>;
    type EigVec = (Array2<A>, Array2<A>);

    fn eigh(&self, uplo: UPLO) -> Result<(Self::EigVal, Self::EigVec)> {
        let (a, b) = (self.0.to_owned(), self.1.to_owned());
        (a, b).eigh_into(uplo)
    }
}

impl<A, S> EighInplace for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
{
    type EigVal = Array1<A::Real>;

    fn eigh_inplace(&mut self, uplo: UPLO) -> Result<(Self::EigVal, &mut Self)> {
        let layout = self.square_layout()?;
        // XXX Force layout to be Fortran (see #146)
        match layout {
            MatrixLayout::C { .. } => self.swap_axes(0, 1),
            MatrixLayout::F { .. } => {}
        }
        let s = A::eigh(true, self.square_layout()?, uplo, self.as_allocated_mut()?)?;
        Ok((ArrayBase::from(s), self))
    }
}

impl<A, S, S2> EighInplace for (ArrayBase<S, Ix2>, ArrayBase<S2, Ix2>)
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
    S2: DataMut<Elem = A>,
{
    type EigVal = Array1<A::Real>;

    /// Solves the generalized eigenvalue problem.
    ///
    /// # Panics
    ///
    /// Panics if the shapes of the matrices are different.
    fn eigh_inplace(&mut self, uplo: UPLO) -> Result<(Self::EigVal, &mut Self)> {
        assert_eq!(
            self.0.shape(),
            self.1.shape(),
            "The shapes of the matrices must be identical.",
        );
        let layout = self.0.square_layout()?;
        // XXX Force layout to be Fortran (see #146)
        match layout {
            MatrixLayout::C { .. } => self.0.swap_axes(0, 1),
            MatrixLayout::F { .. } => {}
        }

        let layout = self.1.square_layout()?;
        match layout {
            MatrixLayout::C { .. } => self.1.swap_axes(0, 1),
            MatrixLayout::F { .. } => {}
        }

        let s = A::eigh_generalized(
            true,
            self.0.square_layout()?,
            uplo,
            self.0.as_allocated_mut()?,
            self.1.as_allocated_mut()?,
        )?;

        Ok((ArrayBase::from(s), self))
    }
}

/// Calculate eigenvalues without eigenvectors
pub trait EigValsh {
    type EigVal;
    fn eigvalsh(&self, uplo: UPLO) -> Result<Self::EigVal>;
}

/// Calculate eigenvalues without eigenvectors
pub trait EigValshInto {
    type EigVal;
    fn eigvalsh_into(self, uplo: UPLO) -> Result<Self::EigVal>;
}

/// Calculate eigenvalues without eigenvectors
pub trait EigValshInplace {
    type EigVal;
    fn eigvalsh_inplace(&mut self, uplo: UPLO) -> Result<Self::EigVal>;
}

impl<A, S> EigValshInto for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
{
    type EigVal = Array1<A::Real>;

    fn eigvalsh_into(mut self, uplo: UPLO) -> Result<Self::EigVal> {
        self.eigvalsh_inplace(uplo)
    }
}

impl<A, S> EigValsh for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    type EigVal = Array1<A::Real>;

    fn eigvalsh(&self, uplo: UPLO) -> Result<Self::EigVal> {
        let a = self.to_owned();
        a.eigvalsh_into(uplo)
    }
}

impl<A, S> EigValshInplace for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
{
    type EigVal = Array1<A::Real>;

    fn eigvalsh_inplace(&mut self, uplo: UPLO) -> Result<Self::EigVal> {
        let s = A::eigh(true, self.square_layout()?, uplo, self.as_allocated_mut()?)?;
        Ok(ArrayBase::from(s))
    }
}

/// Calculate symmetric square-root matrix using `eigh`
pub trait SymmetricSqrt {
    type Output;
    fn ssqrt(&self, uplo: UPLO) -> Result<Self::Output>;
}

impl<A, S> SymmetricSqrt for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    type Output = Array2<A>;

    fn ssqrt(&self, uplo: UPLO) -> Result<Self::Output> {
        let a = self.to_owned();
        a.ssqrt_into(uplo)
    }
}

/// Calculate symmetric square-root matrix using `eigh`
pub trait SymmetricSqrtInto {
    type Output;
    fn ssqrt_into(self, uplo: UPLO) -> Result<Self::Output>;
}

impl<A, S> SymmetricSqrtInto for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A> + DataOwned,
{
    type Output = Array2<A>;

    fn ssqrt_into(self, uplo: UPLO) -> Result<Self::Output> {
        let (e, v) = self.eigh_into(uplo)?;
        let e_sqrt = Array::from_iter(e.iter().map(|r| Scalar::from_real(r.sqrt())));
        let ev = e_sqrt.into_diagonal().apply2(&v.t());
        Ok(v.apply2(&ev))
    }
}