ndarray_linalg/generate.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
//! Generator functions for matrices
use ndarray::*;
use rand::prelude::*;
use super::convert::*;
use super::error::*;
use super::qr::*;
use super::types::*;
/// Hermite conjugate matrix
pub fn conjugate<A, Si, So>(a: &ArrayBase<Si, Ix2>) -> ArrayBase<So, Ix2>
where
A: Scalar,
Si: Data<Elem = A>,
So: DataOwned<Elem = A> + DataMut,
{
let mut a: ArrayBase<So, Ix2> = replicate(&a.t());
for val in a.iter_mut() {
*val = val.conj();
}
a
}
/// Generate random array with given shape
///
/// - This function uses [rand::thread_rng].
/// See [random_using] for using another RNG
pub fn random<A, S, Sh, D>(sh: Sh) -> ArrayBase<S, D>
where
A: Scalar,
S: DataOwned<Elem = A>,
D: Dimension,
Sh: ShapeBuilder<Dim = D>,
{
let mut rng = thread_rng();
random_using(sh, &mut rng)
}
/// Generate random array with given RNG
///
/// - See [random] for using default RNG
pub fn random_using<A, S, Sh, D, R>(sh: Sh, rng: &mut R) -> ArrayBase<S, D>
where
A: Scalar,
S: DataOwned<Elem = A>,
D: Dimension,
Sh: ShapeBuilder<Dim = D>,
R: Rng,
{
ArrayBase::from_shape_fn(sh, |_| A::rand(rng))
}
/// Generate random unitary matrix using QR decomposition
///
/// - Be sure that this it **NOT** a uniform distribution.
/// Use it only for test purpose.
/// - This function uses [rand::thread_rng].
/// See [random_unitary_using] for using another RNG.
pub fn random_unitary<A>(n: usize) -> Array2<A>
where
A: Scalar + Lapack,
{
let mut rng = thread_rng();
random_unitary_using(n, &mut rng)
}
/// Generate random unitary matrix using QR decomposition with given RNG
///
/// - Be sure that this it **NOT** a uniform distribution.
/// Use it only for test purpose.
/// - See [random_unitary] for using default RNG.
pub fn random_unitary_using<A, R>(n: usize, rng: &mut R) -> Array2<A>
where
A: Scalar + Lapack,
R: Rng,
{
let a: Array2<A> = random_using((n, n), rng);
let (q, _r) = a.qr_into().unwrap();
q
}
/// Generate random regular matrix
///
/// - Be sure that this it **NOT** a uniform distribution.
/// Use it only for test purpose.
/// - This function uses [rand::thread_rng].
/// See [random_regular_using] for using another RNG.
pub fn random_regular<A>(n: usize) -> Array2<A>
where
A: Scalar + Lapack,
{
let mut rng = rand::thread_rng();
random_regular_using(n, &mut rng)
}
/// Generate random regular matrix with given RNG
///
/// - Be sure that this it **NOT** a uniform distribution.
/// Use it only for test purpose.
/// - See [random_regular] for using default RNG.
pub fn random_regular_using<A, R>(n: usize, rng: &mut R) -> Array2<A>
where
A: Scalar + Lapack,
R: Rng,
{
let a: Array2<A> = random_using((n, n), rng);
let (q, mut r) = a.qr_into().unwrap();
for i in 0..n {
r[(i, i)] = A::one() + A::from_real(r[(i, i)].abs());
}
q.dot(&r)
}
/// Random Hermite matrix
///
/// - This function uses [rand::thread_rng].
/// See [random_hermite_using] for using another RNG.
pub fn random_hermite<A, S>(n: usize) -> ArrayBase<S, Ix2>
where
A: Scalar,
S: DataOwned<Elem = A> + DataMut,
{
let mut rng = rand::thread_rng();
random_hermite_using(n, &mut rng)
}
/// Random Hermite matrix with given RNG
///
/// - See [random_hermite] for using default RNG.
pub fn random_hermite_using<A, S, R>(n: usize, rng: &mut R) -> ArrayBase<S, Ix2>
where
A: Scalar,
S: DataOwned<Elem = A> + DataMut,
R: Rng,
{
let mut a: ArrayBase<S, Ix2> = random_using((n, n), rng);
for i in 0..n {
a[(i, i)] = a[(i, i)] + a[(i, i)].conj();
for j in (i + 1)..n {
a[(i, j)] = a[(j, i)].conj();
}
}
a
}
/// Random Hermite Positive-definite matrix
///
/// - Eigenvalue of matrix must be larger than 1 (thus non-singular)
/// - This function uses [rand::thread_rng].
/// See [random_hpd_using] for using another RNG.
///
pub fn random_hpd<A, S>(n: usize) -> ArrayBase<S, Ix2>
where
A: Scalar,
S: DataOwned<Elem = A> + DataMut,
{
let mut rng = rand::thread_rng();
random_hpd_using(n, &mut rng)
}
/// Random Hermite Positive-definite matrix with given RNG
///
/// - Eigenvalue of matrix must be larger than 1 (thus non-singular)
/// - See [random_hpd] for using default RNG.
///
pub fn random_hpd_using<A, S, R>(n: usize, rng: &mut R) -> ArrayBase<S, Ix2>
where
A: Scalar,
S: DataOwned<Elem = A> + DataMut,
R: Rng,
{
let a: Array2<A> = random_using((n, n), rng);
let ah: Array2<A> = conjugate(&a);
ArrayBase::eye(n) + &ah.dot(&a)
}
/// construct matrix from diag
pub fn from_diag<A>(d: &[A]) -> Array2<A>
where
A: Scalar,
{
let n = d.len();
let mut e = Array::zeros((n, n));
for i in 0..n {
e[(i, i)] = d[i];
}
e
}
/// stack vectors into matrix horizontally
pub fn hstack<A, S>(xs: &[ArrayBase<S, Ix1>]) -> Result<Array<A, Ix2>>
where
A: Scalar,
S: Data<Elem = A>,
{
let views: Vec<_> = xs.iter().map(|x| x.view()).collect();
stack(Axis(1), &views).map_err(Into::into)
}
/// stack vectors into matrix vertically
pub fn vstack<A, S>(xs: &[ArrayBase<S, Ix1>]) -> Result<Array<A, Ix2>>
where
A: Scalar,
S: Data<Elem = A>,
{
let views: Vec<_> = xs.iter().map(|x| x.view()).collect();
stack(Axis(0), &views).map_err(Into::into)
}