ndarray_linalg/krylov/
mgs.rs1use super::*;
4use crate::{generate::*, inner::*, norm::Norm};
5
6#[derive(Debug, Clone)]
8pub struct MGS<A: Scalar> {
9 dim: usize,
11
12 q: Vec<Array1<A>>,
14
15 tol: A::Real,
17}
18
19impl<A: Scalar + Lapack> MGS<A> {
20 pub fn new(dim: usize, tol: A::Real) -> Self {
22 Self {
23 dim,
24 q: Vec::new(),
25 tol,
26 }
27 }
28}
29
30impl<A: Scalar + Lapack> Orthogonalizer for MGS<A> {
31 type Elem = A;
32
33 fn dim(&self) -> usize {
34 self.dim
35 }
36
37 fn len(&self) -> usize {
38 self.q.len()
39 }
40
41 fn tolerance(&self) -> A::Real {
42 self.tol
43 }
44
45 fn decompose(&self, a: &mut ArrayRef<A, Ix1>) -> Array1<A> {
46 assert_eq!(a.len(), self.dim());
47 let mut coef = Array1::zeros(self.len() + 1);
48 for i in 0..self.len() {
49 let q = &self.q[i];
50 let c = q.inner(a);
51 azip!((a in &mut *a, &q in q) *a -= c * q);
52 coef[i] = c;
53 }
54 let nrm = a.norm_l2();
55 coef[self.len()] = A::from_real(nrm);
56 coef
57 }
58
59 fn coeff<S>(&self, a: ArrayBase<S, Ix1>) -> Array1<A>
60 where
61 A: Lapack,
62 S: Data<Elem = A>,
63 {
64 let mut a = a.into_owned();
65 self.decompose(&mut a)
66 }
67
68 fn append<S>(&mut self, a: ArrayBase<S, Ix1>) -> AppendResult<A>
69 where
70 A: Lapack,
71 S: Data<Elem = A>,
72 {
73 let mut a = a.into_owned();
74 self.div_append(&mut a)
75 }
76
77 fn div_append(&mut self, a: &mut ArrayRef<A, Ix1>) -> AppendResult<A>
78 where
79 A: Lapack,
80 {
81 let coef = self.decompose(a);
82 let nrm = coef[coef.len() - 1].re();
83 if nrm < self.tol {
84 return AppendResult::Dependent(coef);
86 }
87 azip!((a in &mut *a) *a /= A::from_real(nrm));
88 self.q.push(a.to_owned());
89 AppendResult::Added(coef)
90 }
91
92 fn get_q(&self) -> Q<A> {
93 hstack(&self.q).unwrap()
94 }
95}
96
97pub fn mgs<A, S>(
99 iter: impl Iterator<Item = ArrayBase<S, Ix1>>,
100 dim: usize,
101 rtol: A::Real,
102 strategy: Strategy,
103) -> (Q<A>, R<A>)
104where
105 A: Scalar + Lapack,
106 S: Data<Elem = A>,
107{
108 let mgs = MGS::new(dim, rtol);
109 qr(iter, mgs, strategy)
110}