1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
//! Krylov subspace methods

use crate::types::*;
use ndarray::*;

pub mod arnoldi;
pub mod householder;
pub mod mgs;

pub use arnoldi::{arnoldi_householder, arnoldi_mgs, Arnoldi};
pub use householder::{householder, Householder};
pub use mgs::{mgs, MGS};

/// Q-matrix
///
/// - Maybe **NOT** square
/// - Unitary for existing columns
///
pub type Q<A> = Array2<A>;

/// R-matrix
///
/// - Maybe **NOT** square
/// - Upper triangle
///
pub type R<A> = Array2<A>;

/// H-matrix
///
/// - Maybe **NOT** square
/// - Hessenberg matrix
///
pub type H<A> = Array2<A>;

/// Array type for coefficients to the current basis
///
/// - The length must be `self.len() + 1`
/// - Last component is the residual norm
///
pub type Coefficients<A> = Array1<A>;

/// Trait for creating orthogonal basis from iterator of arrays
///
/// Panic
/// -------
/// - if the size of the input array mismatches to the dimension
///
/// Example
/// -------
///
/// ```rust
/// # use ndarray::*;
/// # use ndarray_linalg::{krylov::*, *};
/// let mut mgs = MGS::new(3, 1e-9);
/// let coef = mgs.append(array![0.0, 1.0, 0.0]).into_coeff();
/// close_l2(&coef, &array![1.0], 1e-9);
///
/// let coef = mgs.append(array![1.0, 1.0, 0.0]).into_coeff();
/// close_l2(&coef, &array![1.0, 1.0], 1e-9);
///
/// // Fail if the vector is linearly dependent
/// assert!(mgs.append(array![1.0, 2.0, 0.0]).is_dependent());
///
/// // You can get coefficients of dependent vector
/// if let AppendResult::Dependent(coef) = mgs.append(array![1.0, 2.0, 0.0]) {
///     close_l2(&coef, &array![2.0, 1.0, 0.0], 1e-9);
/// }
/// ```
pub trait Orthogonalizer {
    type Elem: Scalar;

    /// Dimension of input array
    fn dim(&self) -> usize;

    /// Number of cached basis
    fn len(&self) -> usize;

    /// check if the basis spans entire space
    fn is_full(&self) -> bool {
        self.len() == self.dim()
    }

    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    fn tolerance(&self) -> <Self::Elem as Scalar>::Real;

    /// Decompose given vector into the span of current basis and
    /// its tangent space
    ///
    /// - `a` becomes the tangent vector
    /// - The Coefficients to the current basis is returned.
    ///
    fn decompose<S>(&self, a: &mut ArrayBase<S, Ix1>) -> Coefficients<Self::Elem>
    where
        S: DataMut<Elem = Self::Elem>;

    /// Calculate the coefficient to the current basis basis
    ///
    /// - This will be faster than `decompose` because the construction of the residual vector may
    ///   requires more Calculation
    ///
    fn coeff<S>(&self, a: ArrayBase<S, Ix1>) -> Coefficients<Self::Elem>
    where
        S: Data<Elem = Self::Elem>;

    /// Add new vector if the residual is larger than relative tolerance
    fn append<S>(&mut self, a: ArrayBase<S, Ix1>) -> AppendResult<Self::Elem>
    where
        S: Data<Elem = Self::Elem>;

    /// Add new vector if the residual is larger than relative tolerance,
    /// and return the residual vector
    fn div_append<S>(&mut self, a: &mut ArrayBase<S, Ix1>) -> AppendResult<Self::Elem>
    where
        S: DataMut<Elem = Self::Elem>;

    /// Get Q-matrix of generated basis
    fn get_q(&self) -> Q<Self::Elem>;
}

pub enum AppendResult<A> {
    Added(Coefficients<A>),
    Dependent(Coefficients<A>),
}

impl<A: Scalar> AppendResult<A> {
    pub fn into_coeff(self) -> Coefficients<A> {
        match self {
            AppendResult::Added(c) => c,
            AppendResult::Dependent(c) => c,
        }
    }

    pub fn is_dependent(&self) -> bool {
        match self {
            AppendResult::Added(_) => false,
            AppendResult::Dependent(_) => true,
        }
    }

    pub fn coeff(&self) -> &Coefficients<A> {
        match self {
            AppendResult::Added(c) => c,
            AppendResult::Dependent(c) => c,
        }
    }

    pub fn residual_norm(&self) -> A::Real {
        let c = self.coeff();
        c[c.len() - 1].abs()
    }
}

/// Strategy for linearly dependent vectors appearing in iterative QR decomposition
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Strategy {
    /// Terminate iteration if dependent vector comes
    Terminate,

    /// Skip dependent vector
    Skip,

    /// Orthogonalize dependent vector without adding to Q,
    /// i.e. R must be non-square like following:
    ///
    /// ```text
    /// x x x x x
    /// 0 x x x x
    /// 0 0 0 x x
    /// 0 0 0 0 x
    /// ```
    Full,
}

/// Online QR decomposition using arbitrary orthogonalizer
pub fn qr<A, S>(
    iter: impl Iterator<Item = ArrayBase<S, Ix1>>,
    mut ortho: impl Orthogonalizer<Elem = A>,
    strategy: Strategy,
) -> (Q<A>, R<A>)
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    assert_eq!(ortho.len(), 0);

    let mut coefs = Vec::new();
    for a in iter {
        match ortho.append(a.into_owned()) {
            AppendResult::Added(coef) => coefs.push(coef),
            AppendResult::Dependent(coef) => match strategy {
                Strategy::Terminate => break,
                Strategy::Skip => continue,
                Strategy::Full => coefs.push(coef),
            },
        }
    }
    let n = ortho.len();
    let m = coefs.len();
    let mut r = Array2::zeros((n, m).f());
    for j in 0..m {
        for i in 0..n {
            if i < coefs[j].len() {
                r[(i, j)] = coefs[j][i];
            }
        }
    }
    (ortho.get_q(), r)
}