ndarray_linalg/krylov/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
//! Krylov subspace methods
use crate::types::*;
use ndarray::*;
pub mod arnoldi;
pub mod householder;
pub mod mgs;
pub use arnoldi::{arnoldi_householder, arnoldi_mgs, Arnoldi};
pub use householder::{householder, Householder};
pub use mgs::{mgs, MGS};
/// Q-matrix
///
/// - Maybe **NOT** square
/// - Unitary for existing columns
///
pub type Q<A> = Array2<A>;
/// R-matrix
///
/// - Maybe **NOT** square
/// - Upper triangle
///
pub type R<A> = Array2<A>;
/// H-matrix
///
/// - Maybe **NOT** square
/// - Hessenberg matrix
///
pub type H<A> = Array2<A>;
/// Array type for coefficients to the current basis
///
/// - The length must be `self.len() + 1`
/// - Last component is the residual norm
///
pub type Coefficients<A> = Array1<A>;
/// Trait for creating orthogonal basis from iterator of arrays
///
/// Panic
/// -------
/// - if the size of the input array mismatches to the dimension
///
/// Example
/// -------
///
/// ```rust
/// # use ndarray::*;
/// # use ndarray_linalg::{krylov::*, *};
/// let mut mgs = MGS::new(3, 1e-9);
/// let coef = mgs.append(array![0.0, 1.0, 0.0]).into_coeff();
/// close_l2(&coef, &array![1.0], 1e-9);
///
/// let coef = mgs.append(array![1.0, 1.0, 0.0]).into_coeff();
/// close_l2(&coef, &array![1.0, 1.0], 1e-9);
///
/// // Fail if the vector is linearly dependent
/// assert!(mgs.append(array![1.0, 2.0, 0.0]).is_dependent());
///
/// // You can get coefficients of dependent vector
/// if let AppendResult::Dependent(coef) = mgs.append(array![1.0, 2.0, 0.0]) {
/// close_l2(&coef, &array![2.0, 1.0, 0.0], 1e-9);
/// }
/// ```
pub trait Orthogonalizer {
type Elem: Scalar;
/// Dimension of input array
fn dim(&self) -> usize;
/// Number of cached basis
fn len(&self) -> usize;
/// check if the basis spans entire space
fn is_full(&self) -> bool {
self.len() == self.dim()
}
fn is_empty(&self) -> bool {
self.len() == 0
}
fn tolerance(&self) -> <Self::Elem as Scalar>::Real;
/// Decompose given vector into the span of current basis and
/// its tangent space
///
/// - `a` becomes the tangent vector
/// - The Coefficients to the current basis is returned.
///
fn decompose<S>(&self, a: &mut ArrayBase<S, Ix1>) -> Coefficients<Self::Elem>
where
S: DataMut<Elem = Self::Elem>;
/// Calculate the coefficient to the current basis basis
///
/// - This will be faster than `decompose` because the construction of the residual vector may
/// requires more Calculation
///
fn coeff<S>(&self, a: ArrayBase<S, Ix1>) -> Coefficients<Self::Elem>
where
S: Data<Elem = Self::Elem>;
/// Add new vector if the residual is larger than relative tolerance
fn append<S>(&mut self, a: ArrayBase<S, Ix1>) -> AppendResult<Self::Elem>
where
S: Data<Elem = Self::Elem>;
/// Add new vector if the residual is larger than relative tolerance,
/// and return the residual vector
fn div_append<S>(&mut self, a: &mut ArrayBase<S, Ix1>) -> AppendResult<Self::Elem>
where
S: DataMut<Elem = Self::Elem>;
/// Get Q-matrix of generated basis
fn get_q(&self) -> Q<Self::Elem>;
}
pub enum AppendResult<A> {
Added(Coefficients<A>),
Dependent(Coefficients<A>),
}
impl<A: Scalar> AppendResult<A> {
pub fn into_coeff(self) -> Coefficients<A> {
match self {
AppendResult::Added(c) => c,
AppendResult::Dependent(c) => c,
}
}
pub fn is_dependent(&self) -> bool {
match self {
AppendResult::Added(_) => false,
AppendResult::Dependent(_) => true,
}
}
pub fn coeff(&self) -> &Coefficients<A> {
match self {
AppendResult::Added(c) => c,
AppendResult::Dependent(c) => c,
}
}
pub fn residual_norm(&self) -> A::Real {
let c = self.coeff();
c[c.len() - 1].abs()
}
}
/// Strategy for linearly dependent vectors appearing in iterative QR decomposition
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Strategy {
/// Terminate iteration if dependent vector comes
Terminate,
/// Skip dependent vector
Skip,
/// Orthogonalize dependent vector without adding to Q,
/// i.e. R must be non-square like following:
///
/// ```text
/// x x x x x
/// 0 x x x x
/// 0 0 0 x x
/// 0 0 0 0 x
/// ```
Full,
}
/// Online QR decomposition using arbitrary orthogonalizer
pub fn qr<A, S>(
iter: impl Iterator<Item = ArrayBase<S, Ix1>>,
mut ortho: impl Orthogonalizer<Elem = A>,
strategy: Strategy,
) -> (Q<A>, R<A>)
where
A: Scalar + Lapack,
S: Data<Elem = A>,
{
assert_eq!(ortho.len(), 0);
let mut coefs = Vec::new();
for a in iter {
match ortho.append(a.into_owned()) {
AppendResult::Added(coef) => coefs.push(coef),
AppendResult::Dependent(coef) => match strategy {
Strategy::Terminate => break,
Strategy::Skip => continue,
Strategy::Full => coefs.push(coef),
},
}
}
let n = ortho.len();
let m = coefs.len();
let mut r = Array2::zeros((n, m).f());
for j in 0..m {
for i in 0..n {
if i < coefs[j].len() {
r[(i, j)] = coefs[j][i];
}
}
}
(ortho.get_q(), r)
}