1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
//! The `ndarray-linalg` crate provides linear algebra functionalities for `ArrayBase`, the n-dimensional array data structure provided by [`ndarray`](https://github.com/rust-ndarray/ndarray).
//!
//! `ndarray-linalg` leverages [LAPACK](http://www.netlib.org/lapack/)'s routines using the bindings provided by [blas-lapack-rs/lapack](https://github.com/blas-lapack-rs/lapack).
//!
//! Linear algebra methods
//! -----------------------
//! - Decomposition methods:
//! - [QR decomposition](qr/index.html)
//! - [Cholesky/LU decomposition](cholesky/index.html)
//! - [Eigenvalue decomposition](eig/index.html)
//! - [Eigenvalue decomposition for Hermite matrices](eigh/index.html)
//! - [**S**ingular **V**alue **D**ecomposition](svd/index.html)
//! - Solution of linear systems:
//! - [General matrices](solve/index.html)
//! - [Triangular matrices](triangular/index.html)
//! - [Hermitian/real symmetric matrices](solveh/index.html)
//! - [Tridiagonal matrices](tridiagonal/index.html)
//! - [Inverse matrix computation](solve/trait.Inverse.html)
//!
//! Naming Convention
//! -----------------------
//! Each routine is usually exposed as a trait, implemented by the relevant types.
//!
//! For each routine there might be multiple "variants": different traits corresponding to the different ownership possibilities of the array you intend to work on.
//!
//! For example, if you are interested in the QR decomposition of a square matrix, you can use:
//! - [QRSquare](qr/trait.QRSquare.html), if you hold an immutable reference (i.e. `&self`) to the matrix you want to decompose;
//! - [QRSquareInplace](qr/trait.QRSquareInplace.html), if you hold a mutable reference (i.e. `&mut self`) to the matrix you want to decompose;
//! - [QRSquareInto](qr/trait.QRSquareInto.html), if you can pass the matrix you want to decompose by value (e.g. `self`).
//!
//! Depending on the algorithm, each variant might require more or less copy operations of the underlying data.
//!
//! Details are provided in the description of each routine.
//!
//! Utilities
//! -----------
//! - [Assertions for array](index.html#macros)
//! - [Random matrix generators](generate/index.html)
//! - [Scalar trait](types/trait.Scalar.html)
#![allow(
clippy::module_inception,
clippy::many_single_char_names,
clippy::type_complexity,
clippy::ptr_arg
)]
#![deny(rustdoc::broken_intra_doc_links, rustdoc::private_intra_doc_links)]
#[macro_use]
extern crate ndarray;
pub mod assert;
pub mod cholesky;
pub mod convert;
pub mod diagonal;
pub mod eig;
pub mod eigh;
pub mod error;
pub mod generate;
pub mod inner;
pub mod krylov;
pub mod layout;
pub mod least_squares;
pub mod lobpcg;
pub mod norm;
pub mod operator;
pub mod opnorm;
pub mod qr;
pub mod solve;
pub mod solveh;
pub mod svd;
pub mod svddc;
pub mod trace;
pub mod triangular;
pub mod tridiagonal;
pub mod types;
pub use crate::assert::*;
pub use crate::cholesky::*;
pub use crate::convert::*;
pub use crate::diagonal::*;
pub use crate::eig::*;
pub use crate::eigh::*;
pub use crate::generate::*;
pub use crate::inner::*;
pub use crate::layout::*;
pub use crate::least_squares::*;
pub use crate::lobpcg::{TruncatedEig, TruncatedOrder, TruncatedSvd};
pub use crate::norm::*;
pub use crate::operator::*;
pub use crate::opnorm::*;
pub use crate::qr::*;
pub use crate::solve::*;
pub use crate::solveh::*;
pub use crate::svd::*;
pub use crate::svddc::*;
pub use crate::trace::*;
pub use crate::triangular::*;
pub use crate::tridiagonal::*;
pub use crate::types::*;