ndarray_linalg/lobpcg/
lobpcg.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
///! Locally Optimal Block Preconditioned Conjugated
///!
///! This module implements the Locally Optimal Block Preconditioned Conjugated (LOBPCG) algorithm,
///which can be used as a solver for large symmetric positive definite eigenproblems.
use crate::error::{LinalgError, Result};
use crate::{cholesky::*, close_l2, eigh::*, norm::*, triangular::*};
use cauchy::Scalar;
use lax::Lapack;
use ndarray::prelude::*;
use ndarray::{Data, OwnedRepr, ScalarOperand};
use num_traits::{Float, NumCast};

/// Find largest or smallest eigenvalues
#[derive(Debug, Clone)]
pub enum Order {
    Largest,
    Smallest,
}

/// The result of the eigensolver
///
/// In the best case the eigensolver has converged with a result better than the given threshold,
/// then a `LobpcgResult::Ok` gives the eigenvalues, eigenvectors and norms. If an error ocurred
/// during the process, it is returned in `LobpcgResult::Err`, but the best result is still returned,
/// as it could be usable. If there is no result at all, then `LobpcgResult::NoResult` is returned.
/// This happens if the algorithm fails in an early stage, for example if the matrix `A` is not SPD
#[derive(Debug)]
pub enum LobpcgResult<A> {
    Ok(Array1<A>, Array2<A>, Vec<A>),
    Err(Array1<A>, Array2<A>, Vec<A>, LinalgError),
    NoResult(LinalgError),
}

/// Solve full eigenvalue problem, sort by `order` and truncate to `size`
fn sorted_eig<S: Data<Elem = A>, A: Scalar + Lapack>(
    a: ArrayBase<S, Ix2>,
    b: Option<ArrayBase<S, Ix2>>,
    size: usize,
    order: &Order,
) -> Result<(Array1<A>, Array2<A>)> {
    let n = a.len_of(Axis(0));

    let (vals, vecs) = match b {
        Some(b) => (a, b).eigh(UPLO::Upper).map(|x| (x.0, (x.1).0))?,
        _ => a.eigh(UPLO::Upper)?,
    };

    Ok(match order {
        Order::Largest => (
            vals.slice_move(s![n-size..; -1]).mapv(Scalar::from_real),
            vecs.slice_move(s![.., n-size..; -1]),
        ),
        Order::Smallest => (
            vals.slice_move(s![..size]).mapv(Scalar::from_real),
            vecs.slice_move(s![.., ..size]),
        ),
    })
}

/// Masks a matrix with the given `matrix`
fn ndarray_mask<A: Scalar>(matrix: ArrayView2<A>, mask: &[bool]) -> Array2<A> {
    assert_eq!(mask.len(), matrix.ncols());

    let indices = (0..mask.len())
        .zip(mask.iter())
        .filter(|(_, b)| **b)
        .map(|(a, _)| a)
        .collect::<Vec<usize>>();

    matrix.select(Axis(1), &indices)
}

/// Applies constraints ensuring that a matrix is orthogonal to it
///
/// This functions takes a matrix `v` and constraint-matrix `y` and orthogonalize `v` to `y`.
fn apply_constraints<A: Scalar + Lapack>(
    mut v: ArrayViewMut<A, Ix2>,
    cholesky_yy: &CholeskyFactorized<OwnedRepr<A>>,
    y: ArrayView2<A>,
) {
    let gram_yv = y.t().dot(&v);

    let u = gram_yv
        .columns()
        .into_iter()
        .flat_map(|x| {
            let res = cholesky_yy.solvec(&x).unwrap();

            res.to_vec()
        })
        .collect::<Vec<A>>();

    let rows = gram_yv.len_of(Axis(0));
    let u = Array2::from_shape_vec((rows, u.len() / rows), u).unwrap();

    v -= &(y.dot(&u));
}

/// Orthonormalize `V` with Cholesky factorization
///
/// This also returns the matrix `R` of the `QR` problem
fn orthonormalize<T: Scalar + Lapack>(v: Array2<T>) -> Result<(Array2<T>, Array2<T>)> {
    let gram_vv = v.t().dot(&v);
    let gram_vv_fac = gram_vv.cholesky(UPLO::Lower)?;

    close_l2(
        &gram_vv,
        &gram_vv_fac.dot(&gram_vv_fac.t()),
        NumCast::from(1e-5).unwrap(),
    );

    let v_t = v.reversed_axes();
    let u = gram_vv_fac
        .solve_triangular(UPLO::Lower, Diag::NonUnit, &v_t)?
        .reversed_axes();

    Ok((u, gram_vv_fac))
}

/// Eigenvalue solver for large symmetric positive definite (SPD) eigenproblems
///
/// # Arguments
/// * `a` - An operator defining the problem, usually a sparse (sometimes also dense) matrix
/// multiplication. Also called the "stiffness matrix".
/// * `x` - Initial approximation of the k eigenvectors. If `a` has shape=(n,n), then `x` should
/// have shape=(n,k).
/// * `m` - Preconditioner to `a`, by default the identity matrix. Should approximate the inverse
/// of `a`.
/// * `y` - Constraints of (n,size_y), iterations are performed in the orthogonal complement of the
/// column-space of `y`. It must be full rank.
/// * `tol` - The tolerance values defines at which point the solver stops the optimization. The approximation
/// of a eigenvalue stops when then l2-norm of the residual is below this threshold.
/// * `maxiter` - The maximal number of iterations
/// * `order` - Whether to solve for the largest or lowest eigenvalues
///
/// The function returns an `LobpcgResult` with the eigenvalue/eigenvector and achieved residual norm
/// for it. All iterations are tracked and the optimal solution returned. In case of an error a
/// special variant `LobpcgResult::NotConverged` additionally carries the error. This can happen when
/// the precision of the matrix is too low (switch then from `f32` to `f64` for example).
pub fn lobpcg<
    A: Float + Scalar + Lapack + ScalarOperand + PartialOrd + Default,
    F: Fn(ArrayView2<A>) -> Array2<A>,
    G: Fn(ArrayViewMut2<A>),
>(
    a: F,
    mut x: Array2<A>,
    m: G,
    y: Option<Array2<A>>,
    tol: f32,
    maxiter: usize,
    order: Order,
) -> LobpcgResult<A> {
    // the initital approximation should be maximal square
    // n is the dimensionality of the problem
    let (n, size_x) = (x.nrows(), x.ncols());
    assert!(size_x <= n);

    /*let size_y = match y {
        Some(ref y) => y.ncols(),
        _ => 0,
    };

    if (n - size_y) < 5 * size_x {
        panic!("Please use a different approach, the LOBPCG method only supports the calculation of a couple of eigenvectors!");
    }*/

    // cap the number of iteration
    let mut iter = usize::min(n * 10, maxiter);
    let tol = NumCast::from(tol).unwrap();

    // calculate cholesky factorization of YY' and apply constraints to initial guess
    let cholesky_yy = y.as_ref().map(|y| {
        let cholesky_yy = y.t().dot(y).factorizec(UPLO::Lower).unwrap();
        apply_constraints(x.view_mut(), &cholesky_yy, y.view());
        cholesky_yy
    });

    // orthonormalize the initial guess
    let (x, _) = match orthonormalize(x) {
        Ok(x) => x,
        Err(err) => return LobpcgResult::NoResult(err),
    };

    // calculate AX and XAX for Rayleigh quotient
    let ax = a(x.view());
    let xax = x.t().dot(&ax);

    // perform eigenvalue decomposition of XAX
    let (mut lambda, eig_block) = match sorted_eig(xax.view(), None, size_x, &order) {
        Ok(x) => x,
        Err(err) => return LobpcgResult::NoResult(err),
    };

    // initiate approximation of the eigenvector
    let mut x = x.dot(&eig_block);
    let mut ax = ax.dot(&eig_block);

    // track residual below threshold
    let mut activemask = vec![true; size_x];

    // track residuals and best result
    let mut residual_norms_history = Vec::new();
    let mut best_result = None;

    let mut previous_block_size = size_x;

    let mut ident: Array2<A> = Array2::eye(size_x);
    let ident0: Array2<A> = Array2::eye(size_x);
    let two: A = NumCast::from(2.0).unwrap();

    let mut previous_p_ap: Option<(Array2<A>, Array2<A>)> = None;
    let mut explicit_gram_flag = true;

    let final_norm = loop {
        // calculate residual
        let lambda_diag = Array2::from_diag(&lambda);
        let lambda_x = x.dot(&lambda_diag);

        // calculate residual AX - lambdaX
        let r = &ax - &lambda_x;

        // calculate L2 norm of error for every eigenvalue
        let residual_norms = r
            .columns()
            .into_iter()
            .map(|x| x.norm())
            .collect::<Vec<A::Real>>();
        residual_norms_history.push(residual_norms.clone());

        // compare best result and update if we improved
        let sum_rnorm: A::Real = residual_norms.iter().cloned().sum();
        if best_result
            .as_ref()
            .map(|x: &(_, _, Vec<A::Real>)| x.2.iter().cloned().sum::<A::Real>() > sum_rnorm)
            .unwrap_or(true)
        {
            best_result = Some((lambda.clone(), x.clone(), residual_norms.clone()));
        }

        // disable eigenvalues which are below the tolerance threshold
        activemask = residual_norms
            .iter()
            .zip(activemask.iter())
            .map(|(x, a)| *x > tol && *a)
            .collect();

        // resize identity block if necessary
        let current_block_size = activemask.iter().filter(|x| **x).count();
        if current_block_size != previous_block_size {
            previous_block_size = current_block_size;
            ident = Array2::eye(current_block_size);
        }

        // if we are below the threshold for all eigenvalue or exceeded the number of iteration,
        // abort
        if current_block_size == 0 || iter == 0 {
            break Ok(residual_norms);
        }

        // select active eigenvalues, apply pre-conditioner, orthogonalize to Y and orthonormalize
        let mut active_block_r = ndarray_mask(r.view(), &activemask);
        // apply preconditioner
        m(active_block_r.view_mut());
        // apply constraints to the preconditioned residuals
        if let (Some(ref y), Some(ref cholesky_yy)) = (&y, &cholesky_yy) {
            apply_constraints(active_block_r.view_mut(), cholesky_yy, y.view());
        }
        // orthogonalize the preconditioned residual to x
        active_block_r -= &x.dot(&x.t().dot(&active_block_r));

        let (r, _) = match orthonormalize(active_block_r) {
            Ok(x) => x,
            Err(err) => break Err(err),
        };

        let ar = a(r.view());

        // check whether `A` is of type `f32` or `f64`
        let max_rnorm_float = if A::epsilon() > NumCast::from(1e-8).unwrap() {
            NumCast::from(1.0).unwrap()
        } else {
            NumCast::from(1.0e-8).unwrap()
        };

        // if we are once below the max_rnorm, enable explicit gram flag
        let max_norm = residual_norms
            .into_iter()
            .fold(A::Real::neg_infinity(), A::Real::max);
        explicit_gram_flag = max_norm <= max_rnorm_float || explicit_gram_flag;

        // perform the Rayleigh Ritz procedure
        let xar = x.t().dot(&ar);
        let mut rar = r.t().dot(&ar);

        // for small residuals calculate covariance matrices explicitely, otherwise approximate
        // them such that X is orthogonal and uncorrelated to the residual R and use eigenvalues of
        // previous decomposition
        let (xax, xx, rr, xr) = if explicit_gram_flag {
            rar = (&rar + &rar.t()) / two;
            let xax = x.t().dot(&ax);

            (
                (&xax + &xax.t()) / two,
                x.t().dot(&x),
                r.t().dot(&r),
                x.t().dot(&r),
            )
        } else {
            (
                lambda_diag,
                ident0.clone(),
                ident.clone(),
                Array2::zeros((size_x, current_block_size)),
            )
        };

        // mask and orthonormalize P and AP
        let mut p_ap = previous_p_ap
            .as_ref()
            .and_then(|(p, ap)| {
                let active_p = ndarray_mask(p.view(), &activemask);
                let active_ap = ndarray_mask(ap.view(), &activemask);

                orthonormalize(active_p).map(|x| (active_ap, x)).ok()
            })
            .and_then(|(active_ap, (active_p, p_r))| {
                // orthonormalize AP with R^{-1} of A
                let active_ap = active_ap.reversed_axes();
                p_r.solve_triangular(UPLO::Lower, Diag::NonUnit, &active_ap)
                    .map(|active_ap| (active_p, active_ap.reversed_axes()))
                    .ok()
            });

        // compute symmetric gram matrices and calculate solution of eigenproblem
        //
        // first try to compute the eigenvalue decomposition of the span{R, X, P},
        // if this fails (or the algorithm was restarted), then just use span{R, X}
        let result = p_ap
            .as_ref()
            .ok_or(LinalgError::Lapack(
                lax::error::Error::LapackComputationalFailure { return_code: 1 },
            ))
            .and_then(|(active_p, active_ap)| {
                let xap = x.t().dot(active_ap);
                let rap = r.t().dot(active_ap);
                let pap = active_p.t().dot(active_ap);
                let xp = x.t().dot(active_p);
                let rp = r.t().dot(active_p);
                let (pap, pp) = if explicit_gram_flag {
                    ((&pap + &pap.t()) / two, active_p.t().dot(active_p))
                } else {
                    (pap, ident.clone())
                };

                sorted_eig(
                    concatenate![
                        Axis(0),
                        concatenate![Axis(1), xax, xar, xap],
                        concatenate![Axis(1), xar.t(), rar, rap],
                        concatenate![Axis(1), xap.t(), rap.t(), pap]
                    ],
                    Some(concatenate![
                        Axis(0),
                        concatenate![Axis(1), xx, xr, xp],
                        concatenate![Axis(1), xr.t(), rr, rp],
                        concatenate![Axis(1), xp.t(), rp.t(), pp]
                    ]),
                    size_x,
                    &order,
                )
            })
            .or_else(|_| {
                p_ap = None;

                sorted_eig(
                    concatenate![
                        Axis(0),
                        concatenate![Axis(1), xax, xar],
                        concatenate![Axis(1), xar.t(), rar]
                    ],
                    Some(concatenate![
                        Axis(0),
                        concatenate![Axis(1), xx, xr],
                        concatenate![Axis(1), xr.t(), rr]
                    ]),
                    size_x,
                    &order,
                )
            });

        // update eigenvalues and eigenvectors (lambda is also used in the next iteration)
        let eig_vecs;
        match result {
            Ok((x, y)) => {
                lambda = x;
                eig_vecs = y;
            }
            Err(x) => break Err(x),
        }

        // approximate eigenvector X and conjugate vectors P with solution of eigenproblem
        let (p, ap, tau) = if let Some((active_p, active_ap)) = p_ap {
            // tau are eigenvalues to basis of X
            let tau = eig_vecs.slice(s![..size_x, ..]);
            // alpha are eigenvalues to basis of R
            let alpha = eig_vecs.slice(s![size_x..size_x + current_block_size, ..]);
            // gamma are eigenvalues to basis of P
            let gamma = eig_vecs.slice(s![size_x + current_block_size.., ..]);

            // update AP and P in span{R, P} as linear combination
            let updated_p = r.dot(&alpha) + active_p.dot(&gamma);
            let updated_ap = ar.dot(&alpha) + active_ap.dot(&gamma);

            (updated_p, updated_ap, tau)
        } else {
            // tau are eigenvalues to basis of X
            let tau = eig_vecs.slice(s![..size_x, ..]);
            // alpha are eigenvalues to basis of R
            let alpha = eig_vecs.slice(s![size_x.., ..]);

            // update AP and P as linear combination of the residual matrix R
            let updated_p = r.dot(&alpha);
            let updated_ap = ar.dot(&alpha);

            (updated_p, updated_ap, tau)
        };

        // update approximation of X as linear combinations of span{X, P, R}
        x = x.dot(&tau) + &p;
        ax = ax.dot(&tau) + &ap;

        previous_p_ap = Some((p, ap));

        iter -= 1;
    };

    // retrieve best result and convert norm into `A`
    let (vals, vecs, rnorm) = best_result.unwrap();
    let rnorm = rnorm.into_iter().map(Scalar::from_real).collect();

    match final_norm {
        Ok(_) => LobpcgResult::Ok(vals, vecs, rnorm),
        Err(err) => LobpcgResult::Err(vals, vecs, rnorm, err),
    }
}

#[cfg(test)]
mod tests {
    use super::lobpcg;
    use super::ndarray_mask;
    use super::orthonormalize;
    use super::sorted_eig;
    use super::LobpcgResult;
    use super::Order;
    use crate::close_l2;
    use crate::generate;
    use crate::qr::*;
    use ndarray::prelude::*;

    /// Test the `sorted_eigen` function
    #[test]
    fn test_sorted_eigen() {
        let mut rng = rand_pcg::Mcg128Xsl64::new(0xcafef00dd15ea5e5);
        let matrix: Array2<f64> = generate::random_using((10, 10), &mut rng) * 10.0;
        let matrix = matrix.t().dot(&matrix);

        // return all eigenvectors with largest first
        let (vals, vecs) = sorted_eig(matrix.view(), None, 10, &Order::Largest).unwrap();

        // calculate V * A * V' and compare to original matrix
        let diag = Array2::from_diag(&vals);
        let rec = (vecs.dot(&diag)).dot(&vecs.t());

        close_l2(&matrix, &rec, 1e-5);
    }

    /// Test the masking function
    #[test]
    fn test_masking() {
        let mut rng = rand_pcg::Mcg128Xsl64::new(0xcafef00dd15ea5e5);
        let matrix: Array2<f64> = generate::random_using((10, 5), &mut rng) * 10.0;
        let masked_matrix = ndarray_mask(matrix.view(), &[true, true, false, true, false]);
        close_l2(
            &masked_matrix.slice(s![.., 2]),
            &matrix.slice(s![.., 3]),
            1e-12,
        );
    }

    /// Test orthonormalization of a random matrix
    #[test]
    fn test_orthonormalize() {
        let mut rng = rand_pcg::Mcg128Xsl64::new(0xcafef00dd15ea5e5);
        let matrix: Array2<f64> = generate::random_using((10, 10), &mut rng) * 10.0;

        let (n, l) = orthonormalize(matrix.clone()).unwrap();

        // check for orthogonality
        let identity = n.dot(&n.t());
        close_l2(&identity, &Array2::eye(10), 1e-2);

        // compare returned factorization with QR decomposition
        let (_, r) = matrix.qr().unwrap();
        close_l2(&r.mapv(|x| x.abs()), &l.t().mapv(|x| x.abs()), 1e-2);
    }

    fn assert_symmetric(a: &Array2<f64>) {
        close_l2(a, &a.t(), 1e-5);
    }

    fn check_eigenvalues(a: &Array2<f64>, order: Order, num: usize, ground_truth_eigvals: &[f64]) {
        assert_symmetric(a);

        let n = a.len_of(Axis(0));
        let mut rng = rand_pcg::Mcg128Xsl64::new(0xcafef00dd15ea5e5);
        let x: Array2<f64> = generate::random_using((n, num), &mut rng);

        let result = lobpcg(|y| a.dot(&y), x, |_| {}, None, 1e-5, n * 2, order);
        match result {
            LobpcgResult::Ok(vals, _, r_norms) | LobpcgResult::Err(vals, _, r_norms, _) => {
                // check convergence
                for (i, norm) in r_norms.into_iter().enumerate() {
                    if norm > 1e-5 {
                        println!("==== Assertion Failed ====");
                        println!("The {}th eigenvalue estimation did not converge!", i);
                        panic!("Too large deviation of residual norm: {} > 0.01", norm);
                    }
                }

                // check correct order of eigenvalues
                if ground_truth_eigvals.len() == num {
                    close_l2(
                        &Array1::from(ground_truth_eigvals.to_vec()),
                        &vals,
                        num as f64 * 5e-4,
                    )
                }
            }
            LobpcgResult::NoResult(err) => panic!("Did not converge: {:?}", err),
        }
    }

    /// Test the eigensolver with a identity matrix problem and a random initial solution
    #[test]
    fn test_eigsolver_diag() {
        let diag = arr1(&[
            1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
            20.,
        ]);
        let a = Array2::from_diag(&diag);

        check_eigenvalues(&a, Order::Largest, 3, &[20., 19., 18.]);
        check_eigenvalues(&a, Order::Smallest, 3, &[1., 2., 3.]);
    }

    /// Test the eigensolver with matrix of constructed eigenvalues
    #[test]
    fn test_eigsolver_constructed() {
        let n = 50;
        let mut rng = rand_pcg::Mcg128Xsl64::new(0xcafef00dd15ea5e5);
        let tmp = generate::random_using((n, n), &mut rng);
        //let (v, _) = tmp.qr_square().unwrap();
        let (v, _) = orthonormalize(tmp).unwrap();

        // set eigenvalues in decreasing order
        let t = Array2::from_diag(&Array1::linspace(n as f64, -(n as f64), n));
        let a = v.dot(&t.dot(&v.t()));

        // find five largest eigenvalues
        check_eigenvalues(&a, Order::Largest, 5, &[50.0, 48.0, 46.0, 44.0, 42.0]);
        check_eigenvalues(&a, Order::Smallest, 5, &[-50.0, -48.0, -46.0, -44.0, -42.0]);
    }

    #[test]
    fn test_eigsolver_constrained() {
        let diag = arr1(&[1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]);
        let a = Array2::from_diag(&diag);
        let mut rng = rand_pcg::Mcg128Xsl64::new(0xcafef00dd15ea5e5);
        let x: Array2<f64> = generate::random_using((10, 1), &mut rng);
        let y: Array2<f64> = arr2(&[
            [1.0, 0., 0., 0., 0., 0., 0., 0., 0., 0.],
            [0., 1.0, 0., 0., 0., 0., 0., 0., 0., 0.],
        ])
        .reversed_axes();

        let result = lobpcg(
            |y| a.dot(&y),
            x,
            |_| {},
            Some(y),
            1e-10,
            50,
            Order::Smallest,
        );
        match result {
            LobpcgResult::Ok(vals, vecs, r_norms) | LobpcgResult::Err(vals, vecs, r_norms, _) => {
                // check convergence
                for (i, norm) in r_norms.into_iter().enumerate() {
                    if norm > 0.01 {
                        println!("==== Assertion Failed ====");
                        println!("The {}th eigenvalue estimation did not converge!", i);
                        panic!("Too large deviation of residual norm: {} > 0.01", norm);
                    }
                }

                // should be the third eigenvalue
                close_l2(&vals, &Array1::from(vec![3.0]), 1e-10);
                close_l2(
                    &vecs.column(0).mapv(|x| x.abs()),
                    &arr1(&[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]),
                    1e-5,
                );
            }
            LobpcgResult::NoResult(err) => panic!("Did not converge: {:?}", err),
        }
    }
}