ndarray_linalg/opnorm.rs
1//! Operator norm
2
3use lax::Tridiagonal;
4use ndarray::*;
5
6use crate::error::*;
7use crate::layout::*;
8use crate::types::*;
9
10pub use lax::NormType;
11
12/// Operator norm using `*lange` LAPACK routines
13///
14/// [Wikipedia article on operator norm](https://en.wikipedia.org/wiki/Operator_norm)
15pub trait OperationNorm {
16 /// the value of norm
17 type Output: Scalar;
18
19 fn opnorm(&self, t: NormType) -> Result<Self::Output>;
20
21 /// the one norm of a matrix (maximum column sum)
22 fn opnorm_one(&self) -> Result<Self::Output> {
23 self.opnorm(NormType::One)
24 }
25
26 /// the infinity norm of a matrix (maximum row sum)
27 fn opnorm_inf(&self) -> Result<Self::Output> {
28 self.opnorm(NormType::Infinity)
29 }
30
31 /// the Frobenius norm of a matrix (square root of sum of squares)
32 fn opnorm_fro(&self) -> Result<Self::Output> {
33 self.opnorm(NormType::Frobenius)
34 }
35}
36
37impl<A, S> OperationNorm for ArrayBase<S, Ix2>
38where
39 A: Scalar + Lapack,
40 S: Data<Elem = A>,
41{
42 type Output = A::Real;
43
44 fn opnorm(&self, t: NormType) -> Result<Self::Output> {
45 let l = self.layout()?;
46 let a = self.as_allocated()?;
47 Ok(A::opnorm(t, l, a))
48 }
49}
50
51impl<A> OperationNorm for Tridiagonal<A>
52where
53 A: Scalar + Lapack,
54{
55 type Output = A::Real;
56
57 fn opnorm(&self, t: NormType) -> Result<Self::Output> {
58 // `self` is a tridiagonal matrix like,
59 // [d0, u1, 0, ..., 0,
60 // l1, d1, u2, ...,
61 // 0, l2, d2,
62 // ... ..., u{n-1},
63 // 0, ..., l{n-1}, d{n-1},]
64 let arr = match t {
65 // opnorm_one() calculates muximum column sum.
66 // Therefore, This part align the columns and make a (3 x n) matrix like,
67 // [ 0, u1, u2, ..., u{n-1},
68 // d0, d1, d2, ..., d{n-1},
69 // l1, l2, l3, ..., 0,]
70 NormType::One => {
71 let zl: Array1<A> = Array::zeros(1);
72 let zu: Array1<A> = Array::zeros(1);
73 let dl = concatenate![Axis(0), &self.dl, zl]; // n
74 let du = concatenate![Axis(0), zu, &self.du]; // n
75 stack![Axis(0), du, &self.d, dl] // 3 x n
76 }
77 // opnorm_inf() calculates muximum row sum.
78 // Therefore, This part align the rows and make a (n x 3) matrix like,
79 // [ 0, d0, u1,
80 // l1, d1, u2,
81 // l2, d2, u3,
82 // ..., ..., ...,
83 // l{n-1}, d{n-1}, 0,]
84 NormType::Infinity => {
85 let zl: Array1<A> = Array::zeros(1);
86 let zu: Array1<A> = Array::zeros(1);
87 let dl = concatenate![Axis(0), zl, &self.dl]; // n
88 let du = concatenate![Axis(0), &self.du, zu]; // n
89 stack![Axis(1), dl, &self.d, du] // n x 3
90 }
91 // opnorm_fro() calculates square root of sum of squares.
92 // Because it is independent of the shape of matrix,
93 // this part make a (1 x (3n-2)) matrix like,
94 // [l1, ..., l{n-1}, d0, ..., d{n-1}, u1, ..., u{n-1}]
95 NormType::Frobenius => {
96 concatenate![Axis(0), &self.dl, &self.d, &self.du].insert_axis(Axis(0))
97 }
98 };
99 let l = arr.layout()?;
100 let a = arr.as_allocated()?;
101 Ok(A::opnorm(t, l, a))
102 }
103}