ndarray_linalg/opnorm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
//! Operator norm
use lax::Tridiagonal;
use ndarray::*;
use crate::error::*;
use crate::layout::*;
use crate::types::*;
pub use lax::NormType;
/// Operator norm using `*lange` LAPACK routines
///
/// [Wikipedia article on operator norm](https://en.wikipedia.org/wiki/Operator_norm)
pub trait OperationNorm {
/// the value of norm
type Output: Scalar;
fn opnorm(&self, t: NormType) -> Result<Self::Output>;
/// the one norm of a matrix (maximum column sum)
fn opnorm_one(&self) -> Result<Self::Output> {
self.opnorm(NormType::One)
}
/// the infinity norm of a matrix (maximum row sum)
fn opnorm_inf(&self) -> Result<Self::Output> {
self.opnorm(NormType::Infinity)
}
/// the Frobenius norm of a matrix (square root of sum of squares)
fn opnorm_fro(&self) -> Result<Self::Output> {
self.opnorm(NormType::Frobenius)
}
}
impl<A, S> OperationNorm for ArrayBase<S, Ix2>
where
A: Scalar + Lapack,
S: Data<Elem = A>,
{
type Output = A::Real;
fn opnorm(&self, t: NormType) -> Result<Self::Output> {
let l = self.layout()?;
let a = self.as_allocated()?;
Ok(A::opnorm(t, l, a))
}
}
impl<A> OperationNorm for Tridiagonal<A>
where
A: Scalar + Lapack,
{
type Output = A::Real;
fn opnorm(&self, t: NormType) -> Result<Self::Output> {
// `self` is a tridiagonal matrix like,
// [d0, u1, 0, ..., 0,
// l1, d1, u2, ...,
// 0, l2, d2,
// ... ..., u{n-1},
// 0, ..., l{n-1}, d{n-1},]
let arr = match t {
// opnorm_one() calculates muximum column sum.
// Therefore, This part align the columns and make a (3 x n) matrix like,
// [ 0, u1, u2, ..., u{n-1},
// d0, d1, d2, ..., d{n-1},
// l1, l2, l3, ..., 0,]
NormType::One => {
let zl: Array1<A> = Array::zeros(1);
let zu: Array1<A> = Array::zeros(1);
let dl = concatenate![Axis(0), &self.dl, zl]; // n
let du = concatenate![Axis(0), zu, &self.du]; // n
stack![Axis(0), du, &self.d, dl] // 3 x n
}
// opnorm_inf() calculates muximum row sum.
// Therefore, This part align the rows and make a (n x 3) matrix like,
// [ 0, d0, u1,
// l1, d1, u2,
// l2, d2, u3,
// ..., ..., ...,
// l{n-1}, d{n-1}, 0,]
NormType::Infinity => {
let zl: Array1<A> = Array::zeros(1);
let zu: Array1<A> = Array::zeros(1);
let dl = concatenate![Axis(0), zl, &self.dl]; // n
let du = concatenate![Axis(0), &self.du, zu]; // n
stack![Axis(1), dl, &self.d, du] // n x 3
}
// opnorm_fro() calculates square root of sum of squares.
// Because it is independent of the shape of matrix,
// this part make a (1 x (3n-2)) matrix like,
// [l1, ..., l{n-1}, d0, ..., d{n-1}, u1, ..., u{n-1}]
NormType::Frobenius => {
concatenate![Axis(0), &self.dl, &self.d, &self.du].insert_axis(Axis(0))
}
};
let l = arr.layout()?;
let a = arr.as_allocated()?;
Ok(A::opnorm(t, l, a))
}
}