1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
//! Solve Hermitian (or real symmetric) linear problems and invert Hermitian
//! (or real symmetric) matrices
//!
//! **Note that only the upper triangular portion of the matrix is used.**
//!
//! # Examples
//!
//! Solve `A * x = b`, where `A` is a Hermitian (or real symmetric) matrix:
//!
//! ```
//! use ndarray::prelude::*;
//! use ndarray_linalg::SolveH;
//!
//! let a: Array2<f64> = array![
//! [3., 2., -1.],
//! [2., -2., 4.],
//! [-1., 4., 5.]
//! ];
//! let b: Array1<f64> = array![11., -12., 1.];
//! let x = a.solveh_into(b).unwrap();
//! assert!(x.abs_diff_eq(&array![1., 3., -2.], 1e-9));
//! ```
//!
//! If you are solving multiple systems of linear equations with the same
//! Hermitian or real symmetric coefficient matrix `A`, it's faster to compute
//! the factorization once at the beginning than solving directly using `A`:
//!
//! ```
//! use ndarray::prelude::*;
//! use ndarray_linalg::*;
//!
//! /// Use fixed algorithm and seed of PRNG for reproducible test
//! let mut rng = rand_pcg::Mcg128Xsl64::new(0xcafef00dd15ea5e5);
//!
//! let a: Array2<f64> = random_using((3, 3), &mut rng);
//! let f = a.factorizeh_into().unwrap(); // Factorize A (A is consumed)
//! for _ in 0..10 {
//! let b: Array1<f64> = random_using(3, &mut rng);
//! let x = f.solveh_into(b).unwrap(); // Solve A * x = b using the factorization
//! }
//! ```
use ndarray::*;
use num_traits::{Float, One, Zero};
use crate::convert::*;
use crate::error::*;
use crate::layout::*;
use crate::types::*;
pub use lax::{Pivot, UPLO};
/// An interface for solving systems of Hermitian (or real symmetric) linear equations.
///
/// If you plan to solve many equations with the same Hermitian (or real
/// symmetric) coefficient matrix `A` but different `b` vectors, it's faster to
/// factor the `A` matrix once using the `FactorizeH` trait, and then solve
/// using the `BKFactorized` struct.
pub trait SolveH<A: Scalar> {
/// Solves a system of linear equations `A * x = b` with Hermitian (or real
/// symmetric) matrix `A`, where `A` is `self`, `b` is the argument, and
/// `x` is the successful result.
///
/// # Panics
///
/// Panics if the length of `b` is not the equal to the number of columns
/// of `A`.
fn solveh<S: Data<Elem = A>>(&self, b: &ArrayBase<S, Ix1>) -> Result<Array1<A>> {
let mut b = replicate(b);
self.solveh_inplace(&mut b)?;
Ok(b)
}
/// Solves a system of linear equations `A * x = b` with Hermitian (or real
/// symmetric) matrix `A`, where `A` is `self`, `b` is the argument, and
/// `x` is the successful result.
///
/// # Panics
///
/// Panics if the length of `b` is not the equal to the number of columns
/// of `A`.
fn solveh_into<S: DataMut<Elem = A>>(
&self,
mut b: ArrayBase<S, Ix1>,
) -> Result<ArrayBase<S, Ix1>> {
self.solveh_inplace(&mut b)?;
Ok(b)
}
/// Solves a system of linear equations `A * x = b` with Hermitian (or real
/// symmetric) matrix `A`, where `A` is `self`, `b` is the argument, and
/// `x` is the successful result. The value of `x` is also assigned to the
/// argument.
///
/// # Panics
///
/// Panics if the length of `b` is not the equal to the number of columns
/// of `A`.
fn solveh_inplace<'a, S: DataMut<Elem = A>>(
&self,
b: &'a mut ArrayBase<S, Ix1>,
) -> Result<&'a mut ArrayBase<S, Ix1>>;
}
/// Represents the Bunch–Kaufman factorization of a Hermitian (or real
/// symmetric) matrix as `A = P * U * D * U^H * P^T`.
pub struct BKFactorized<S: Data> {
pub a: ArrayBase<S, Ix2>,
pub ipiv: Pivot,
}
impl<A, S> SolveH<A> for BKFactorized<S>
where
A: Scalar + Lapack,
S: Data<Elem = A>,
{
fn solveh_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Ix1>,
) -> Result<&'a mut ArrayBase<Sb, Ix1>>
where
Sb: DataMut<Elem = A>,
{
assert_eq!(
rhs.len(),
self.a.len_of(Axis(1)),
"The length of `rhs` must be compatible with the shape of the factored matrix.",
);
A::solveh(
self.a.square_layout()?,
UPLO::Upper,
self.a.as_allocated()?,
&self.ipiv,
rhs.as_slice_mut().unwrap(),
)?;
Ok(rhs)
}
}
impl<A, S> SolveH<A> for ArrayBase<S, Ix2>
where
A: Scalar + Lapack,
S: Data<Elem = A>,
{
fn solveh_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Ix1>,
) -> Result<&'a mut ArrayBase<Sb, Ix1>>
where
Sb: DataMut<Elem = A>,
{
let f = self.factorizeh()?;
f.solveh_inplace(rhs)
}
}
/// An interface for computing the Bunch–Kaufman factorization of Hermitian (or
/// real symmetric) matrix refs.
pub trait FactorizeH<S: Data> {
/// Computes the Bunch–Kaufman factorization of a Hermitian (or real
/// symmetric) matrix.
fn factorizeh(&self) -> Result<BKFactorized<S>>;
}
/// An interface for computing the Bunch–Kaufman factorization of Hermitian (or
/// real symmetric) matrices.
pub trait FactorizeHInto<S: Data> {
/// Computes the Bunch–Kaufman factorization of a Hermitian (or real
/// symmetric) matrix.
fn factorizeh_into(self) -> Result<BKFactorized<S>>;
}
impl<A, S> FactorizeHInto<S> for ArrayBase<S, Ix2>
where
A: Scalar + Lapack,
S: DataMut<Elem = A>,
{
fn factorizeh_into(mut self) -> Result<BKFactorized<S>> {
let ipiv = A::bk(self.square_layout()?, UPLO::Upper, self.as_allocated_mut()?)?;
Ok(BKFactorized { a: self, ipiv })
}
}
impl<A, Si> FactorizeH<OwnedRepr<A>> for ArrayBase<Si, Ix2>
where
A: Scalar + Lapack,
Si: Data<Elem = A>,
{
fn factorizeh(&self) -> Result<BKFactorized<OwnedRepr<A>>> {
let mut a: Array2<A> = replicate(self);
let ipiv = A::bk(a.square_layout()?, UPLO::Upper, a.as_allocated_mut()?)?;
Ok(BKFactorized { a, ipiv })
}
}
/// An interface for inverting Hermitian (or real symmetric) matrix refs.
pub trait InverseH {
type Output;
/// Computes the inverse of the Hermitian (or real symmetric) matrix.
fn invh(&self) -> Result<Self::Output>;
}
/// An interface for inverting Hermitian (or real symmetric) matrices.
pub trait InverseHInto {
type Output;
/// Computes the inverse of the Hermitian (or real symmetric) matrix.
fn invh_into(self) -> Result<Self::Output>;
}
impl<A, S> InverseHInto for BKFactorized<S>
where
A: Scalar + Lapack,
S: DataMut<Elem = A>,
{
type Output = ArrayBase<S, Ix2>;
fn invh_into(mut self) -> Result<ArrayBase<S, Ix2>> {
A::invh(
self.a.square_layout()?,
UPLO::Upper,
self.a.as_allocated_mut()?,
&self.ipiv,
)?;
triangular_fill_hermitian(&mut self.a, UPLO::Upper);
Ok(self.a)
}
}
impl<A, S> InverseH for BKFactorized<S>
where
A: Scalar + Lapack,
S: Data<Elem = A>,
{
type Output = Array2<A>;
fn invh(&self) -> Result<Self::Output> {
let f = BKFactorized {
a: replicate(&self.a),
ipiv: self.ipiv.clone(),
};
f.invh_into()
}
}
impl<A, S> InverseHInto for ArrayBase<S, Ix2>
where
A: Scalar + Lapack,
S: DataMut<Elem = A>,
{
type Output = Self;
fn invh_into(self) -> Result<Self::Output> {
let f = self.factorizeh_into()?;
f.invh_into()
}
}
impl<A, Si> InverseH for ArrayBase<Si, Ix2>
where
A: Scalar + Lapack,
Si: Data<Elem = A>,
{
type Output = Array2<A>;
fn invh(&self) -> Result<Self::Output> {
let f = self.factorizeh()?;
f.invh_into()
}
}
/// An interface for calculating determinants of Hermitian (or real symmetric) matrix refs.
pub trait DeterminantH {
/// The element type of the matrix.
type Elem: Scalar;
/// Computes the determinant of the Hermitian (or real symmetric) matrix.
fn deth(&self) -> Result<<Self::Elem as Scalar>::Real>;
/// Computes the `(sign, natural_log)` of the determinant of the Hermitian
/// (or real symmetric) matrix.
///
/// The `natural_log` is the natural logarithm of the absolute value of the
/// determinant. If the determinant is zero, `sign` is 0 and `natural_log`
/// is negative infinity.
///
/// To obtain the determinant, you can compute `sign * natural_log.exp()`
/// or just call `.deth()` instead.
///
/// This method is more robust than `.deth()` to very small or very large
/// determinants since it returns the natural logarithm of the determinant
/// rather than the determinant itself.
fn sln_deth(&self) -> Result<(<Self::Elem as Scalar>::Real, <Self::Elem as Scalar>::Real)>;
}
/// An interface for calculating determinants of Hermitian (or real symmetric) matrices.
pub trait DeterminantHInto {
/// The element type of the matrix.
type Elem: Scalar;
/// Computes the determinant of the Hermitian (or real symmetric) matrix.
fn deth_into(self) -> Result<<Self::Elem as Scalar>::Real>;
/// Computes the `(sign, natural_log)` of the determinant of the Hermitian
/// (or real symmetric) matrix.
///
/// The `natural_log` is the natural logarithm of the absolute value of the
/// determinant. If the determinant is zero, `sign` is 0 and `natural_log`
/// is negative infinity.
///
/// To obtain the determinant, you can compute `sign * natural_log.exp()`
/// or just call `.deth_into()` instead.
///
/// This method is more robust than `.deth_into()` to very small or very
/// large determinants since it returns the natural logarithm of the
/// determinant rather than the determinant itself.
fn sln_deth_into(self) -> Result<(<Self::Elem as Scalar>::Real, <Self::Elem as Scalar>::Real)>;
}
/// Returns the sign and natural log of the determinant.
fn bk_sln_det<P, S, A>(uplo: UPLO, ipiv_iter: P, a: &ArrayBase<S, Ix2>) -> (A::Real, A::Real)
where
P: Iterator<Item = i32>,
S: Data<Elem = A>,
A: Scalar + Lapack,
{
let layout = a.layout().unwrap();
let mut sign = A::Real::one();
let mut ln_det = A::Real::zero();
let mut ipiv_enum = ipiv_iter.enumerate();
while let Some((k, ipiv_k)) = ipiv_enum.next() {
debug_assert!(k < a.nrows() && k < a.ncols());
if ipiv_k > 0 {
// 1x1 block at k, must be real.
let elem = unsafe { a.uget((k, k)) }.re();
debug_assert_eq!(elem.im(), Zero::zero());
sign *= elem.signum();
ln_det += Float::ln(Float::abs(elem));
} else {
// 2x2 block at k..k+2.
// Upper left diagonal elem, must be real.
let upper_diag = unsafe { a.uget((k, k)) }.re();
debug_assert_eq!(upper_diag.im(), Zero::zero());
// Lower right diagonal elem, must be real.
let lower_diag = unsafe { a.uget((k + 1, k + 1)) }.re();
debug_assert_eq!(lower_diag.im(), Zero::zero());
// Off-diagonal elements, can be complex.
let off_diag = match layout {
MatrixLayout::C { .. } => match uplo {
UPLO::Upper => unsafe { a.uget((k + 1, k)) },
UPLO::Lower => unsafe { a.uget((k, k + 1)) },
},
MatrixLayout::F { .. } => match uplo {
UPLO::Upper => unsafe { a.uget((k, k + 1)) },
UPLO::Lower => unsafe { a.uget((k + 1, k)) },
},
};
// Determinant of 2x2 block.
let block_det = upper_diag * lower_diag - off_diag.square();
sign *= block_det.signum();
ln_det += Float::ln(Float::abs(block_det));
// Skip the k+1 ipiv value.
ipiv_enum.next();
}
}
(sign, ln_det)
}
impl<A, S> BKFactorized<S>
where
A: Scalar + Lapack,
S: Data<Elem = A>,
{
/// Computes the determinant of the factorized Hermitian (or real
/// symmetric) matrix.
pub fn deth(&self) -> A::Real {
let (sign, ln_det) = self.sln_deth();
sign * Float::exp(ln_det)
}
/// Computes the `(sign, natural_log)` of the determinant of the factorized
/// Hermitian (or real symmetric) matrix.
///
/// The `natural_log` is the natural logarithm of the absolute value of the
/// determinant. If the determinant is zero, `sign` is 0 and `natural_log`
/// is negative infinity.
///
/// To obtain the determinant, you can compute `sign * natural_log.exp()`
/// or just call `.deth()` instead.
///
/// This method is more robust than `.deth()` to very small or very large
/// determinants since it returns the natural logarithm of the determinant
/// rather than the determinant itself.
pub fn sln_deth(&self) -> (A::Real, A::Real) {
bk_sln_det(UPLO::Upper, self.ipiv.iter().cloned(), &self.a)
}
/// Computes the determinant of the factorized Hermitian (or real
/// symmetric) matrix.
pub fn deth_into(self) -> A::Real {
let (sign, ln_det) = self.sln_deth_into();
sign * Float::exp(ln_det)
}
/// Computes the `(sign, natural_log)` of the determinant of the factorized
/// Hermitian (or real symmetric) matrix.
///
/// The `natural_log` is the natural logarithm of the absolute value of the
/// determinant. If the determinant is zero, `sign` is 0 and `natural_log`
/// is negative infinity.
///
/// To obtain the determinant, you can compute `sign * natural_log.exp()`
/// or just call `.deth_into()` instead.
///
/// This method is more robust than `.deth_into()` to very small or very
/// large determinants since it returns the natural logarithm of the
/// determinant rather than the determinant itself.
pub fn sln_deth_into(self) -> (A::Real, A::Real) {
bk_sln_det(UPLO::Upper, self.ipiv.into_iter(), &self.a)
}
}
impl<A, S> DeterminantH for ArrayBase<S, Ix2>
where
A: Scalar + Lapack,
S: Data<Elem = A>,
{
type Elem = A;
fn deth(&self) -> Result<A::Real> {
let (sign, ln_det) = self.sln_deth()?;
Ok(sign * Float::exp(ln_det))
}
fn sln_deth(&self) -> Result<(A::Real, A::Real)> {
match self.factorizeh() {
Ok(fac) => Ok(fac.sln_deth()),
Err(LinalgError::Lapack(e))
if matches!(e, lax::error::Error::LapackComputationalFailure { .. }) =>
{
// Determinant is zero.
Ok((A::Real::zero(), A::Real::neg_infinity()))
}
Err(err) => Err(err),
}
}
}
impl<A, S> DeterminantHInto for ArrayBase<S, Ix2>
where
A: Scalar + Lapack,
S: DataMut<Elem = A>,
{
type Elem = A;
fn deth_into(self) -> Result<A::Real> {
let (sign, ln_det) = self.sln_deth_into()?;
Ok(sign * Float::exp(ln_det))
}
fn sln_deth_into(self) -> Result<(A::Real, A::Real)> {
match self.factorizeh_into() {
Ok(fac) => Ok(fac.sln_deth_into()),
Err(LinalgError::Lapack(e))
if matches!(e, lax::error::Error::LapackComputationalFailure { .. }) =>
{
// Determinant is zero.
Ok((A::Real::zero(), A::Real::neg_infinity()))
}
Err(err) => Err(err),
}
}
}