Module ndarray_linalg::cholesky
source · Expand description
Cholesky decomposition of Hermitian (or real symmetric) positive definite matrices
See the Wikipedia page about Cholesky decomposition for more information.
§Example
Using the Cholesky decomposition of A
for various operations, where A
is a Hermitian (or real symmetric) positive definite matrix:
#[macro_use]
extern crate ndarray;
extern crate ndarray_linalg;
use ndarray::prelude::*;
use ndarray_linalg::cholesky::*;
let a: Array2<f64> = array![
[ 4., 12., -16.],
[ 12., 37., -43.],
[-16., -43., 98.]
];
// Obtain `L`
let lower = a.cholesky(UPLO::Lower).unwrap();
assert!(lower.abs_diff_eq(&array![
[ 2., 0., 0.],
[ 6., 1., 0.],
[-8., 5., 3.]
], 1e-9));
// Find the determinant of `A`
let det = a.detc().unwrap();
assert!((det - 36.).abs() < 1e-9);
// Solve `A * x = b`
let b = array![4., 13., -11.];
let x = a.solvec(&b).unwrap();
assert!(x.abs_diff_eq(&array![-2., 1., 0.], 1e-9));
Structs§
- Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix
Enums§
- Upper/Lower specification for seveal usages
Traits§
- Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix reference
- Cholesky decomposition of Hermitian (or real symmetric) positive definite mutable reference of matrix
- Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix
- Determinant of Hermitian (or real symmetric) positive definite matrix ref
- Determinant of Hermitian (or real symmetric) positive definite matrix
- Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix reference
- Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix
- Inverse of Hermitian (or real symmetric) positive definite matrix ref
- Inverse of Hermitian (or real symmetric) positive definite matrix
- Solve systems of linear equations with Hermitian (or real symmetric) positive definite coefficient matrices