Struct ndarray_linalg::cholesky::CholeskyFactorized
source · pub struct CholeskyFactorized<S: Data> {
pub factor: ArrayBase<S, Ix2>,
pub uplo: UPLO,
}
Expand description
Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix
Fields§
§factor: ArrayBase<S, Ix2>
L
from the decomposition A = L * L^H
or U
from the decomposition
A = U^H * U
.
uplo: UPLO
If this is UPLO::Lower
, then self.factor
is L
. If this is
UPLO::Upper
, then self.factor
is U
.
Implementations§
source§impl<A, S> CholeskyFactorized<S>
impl<A, S> CholeskyFactorized<S>
sourcepub fn into_lower(self) -> ArrayBase<S, Ix2>
pub fn into_lower(self) -> ArrayBase<S, Ix2>
Returns L
from the Cholesky decomposition A = L * L^H
.
If self.uplo == UPLO::Lower
, then no computations need to be
performed; otherwise, the conjugate transpose of self.factor
is
calculated.
sourcepub fn into_upper(self) -> ArrayBase<S, Ix2>
pub fn into_upper(self) -> ArrayBase<S, Ix2>
Returns U
from the Cholesky decomposition A = U^H * U
.
If self.uplo == UPLO::Upper
, then no computations need to be
performed; otherwise, the conjugate transpose of self.factor
is
calculated.
Trait Implementations§
source§impl<A, S> DeterminantC for CholeskyFactorized<S>
impl<A, S> DeterminantC for CholeskyFactorized<S>
source§impl<A, S> DeterminantCInto for CholeskyFactorized<S>
impl<A, S> DeterminantCInto for CholeskyFactorized<S>
type Output = <A as Scalar>::Real
source§fn detc_into(self) -> Self::Output
fn detc_into(self) -> Self::Output
Computes the determinant of the Hermitian (or real symmetric) positive
definite matrix.
source§fn ln_detc_into(self) -> Self::Output
fn ln_detc_into(self) -> Self::Output
Computes the natural log of the determinant of the Hermitian (or real
symmetric) positive definite matrix. Read more
source§impl<A, S> InverseC for CholeskyFactorized<S>
impl<A, S> InverseC for CholeskyFactorized<S>
source§impl<A, S> InverseCInto for CholeskyFactorized<S>
impl<A, S> InverseCInto for CholeskyFactorized<S>
source§impl<A, S> SolveC<A> for CholeskyFactorized<S>
impl<A, S> SolveC<A> for CholeskyFactorized<S>
source§fn solvec_inplace<'a, Sb>(
&self,
b: &'a mut ArrayBase<Sb, Ix1>,
) -> Result<&'a mut ArrayBase<Sb, Ix1>>where
Sb: DataMut<Elem = A>,
fn solvec_inplace<'a, Sb>(
&self,
b: &'a mut ArrayBase<Sb, Ix1>,
) -> Result<&'a mut ArrayBase<Sb, Ix1>>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A * x = b
with Hermitian (or real
symmetric) positive definite matrix A
, where A
is self
, b
is
the argument, and x
is the successful result. The value of x
is
also assigned to the argument.Auto Trait Implementations§
impl<S> Freeze for CholeskyFactorized<S>where
S: Freeze,
impl<S> RefUnwindSafe for CholeskyFactorized<S>
impl<S> Send for CholeskyFactorized<S>where
S: Send,
impl<S> Sync for CholeskyFactorized<S>where
S: Sync,
impl<S> Unpin for CholeskyFactorized<S>where
S: Unpin,
impl<S> UnwindSafe for CholeskyFactorized<S>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more