ndarray_linalg::tridiagonal

Trait SolveTridiagonal

Source
pub trait SolveTridiagonal<A: Scalar, D: Dimension> {
    // Required methods
    fn solve_tridiagonal<S: Data<Elem = A>>(
        &self,
        b: &ArrayBase<S, D>,
    ) -> Result<Array<A, D>>;
    fn solve_tridiagonal_into<S: DataMut<Elem = A>>(
        &self,
        b: ArrayBase<S, D>,
    ) -> Result<ArrayBase<S, D>>;
    fn solve_t_tridiagonal<S: Data<Elem = A>>(
        &self,
        b: &ArrayBase<S, D>,
    ) -> Result<Array<A, D>>;
    fn solve_t_tridiagonal_into<S: DataMut<Elem = A>>(
        &self,
        b: ArrayBase<S, D>,
    ) -> Result<ArrayBase<S, D>>;
    fn solve_h_tridiagonal<S: Data<Elem = A>>(
        &self,
        b: &ArrayBase<S, D>,
    ) -> Result<Array<A, D>>;
    fn solve_h_tridiagonal_into<S: DataMut<Elem = A>>(
        &self,
        b: ArrayBase<S, D>,
    ) -> Result<ArrayBase<S, D>>;
}

Required Methods§

Source

fn solve_tridiagonal<S: Data<Elem = A>>( &self, b: &ArrayBase<S, D>, ) -> Result<Array<A, D>>

Solves a system of linear equations A * x = b with tridiagonal matrix A, where A is self, b is the argument, and x is the successful result.

Source

fn solve_tridiagonal_into<S: DataMut<Elem = A>>( &self, b: ArrayBase<S, D>, ) -> Result<ArrayBase<S, D>>

Solves a system of linear equations A * x = b with tridiagonal matrix A, where A is self, b is the argument, and x is the successful result.

Source

fn solve_t_tridiagonal<S: Data<Elem = A>>( &self, b: &ArrayBase<S, D>, ) -> Result<Array<A, D>>

Solves a system of linear equations A^T * x = b with tridiagonal matrix A, where A is self, b is the argument, and x is the successful result.

Source

fn solve_t_tridiagonal_into<S: DataMut<Elem = A>>( &self, b: ArrayBase<S, D>, ) -> Result<ArrayBase<S, D>>

Solves a system of linear equations A^T * x = b with tridiagonal matrix A, where A is self, b is the argument, and x is the successful result.

Source

fn solve_h_tridiagonal<S: Data<Elem = A>>( &self, b: &ArrayBase<S, D>, ) -> Result<Array<A, D>>

Solves a system of linear equations A^H * x = b with tridiagonal matrix A, where A is self, b is the argument, and x is the successful result.

Source

fn solve_h_tridiagonal_into<S: DataMut<Elem = A>>( &self, b: ArrayBase<S, D>, ) -> Result<ArrayBase<S, D>>

Solves a system of linear equations A^H * x = b with tridiagonal matrix A, where A is self, b is the argument, and x is the successful result.

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementations on Foreign Types§

Source§

impl<A, S> SolveTridiagonal<A, Dim<[usize; 1]>> for ArrayBase<S, Ix2>
where A: Scalar + Lapack, S: Data<Elem = A>,

Source§

fn solve_tridiagonal<Sb: Data<Elem = A>>( &self, b: &ArrayBase<Sb, Ix1>, ) -> Result<Array<A, Ix1>>

Source§

fn solve_tridiagonal_into<Sb: DataMut<Elem = A>>( &self, b: ArrayBase<Sb, Ix1>, ) -> Result<ArrayBase<Sb, Ix1>>

Source§

fn solve_t_tridiagonal<Sb: Data<Elem = A>>( &self, b: &ArrayBase<Sb, Ix1>, ) -> Result<Array<A, Ix1>>

Source§

fn solve_t_tridiagonal_into<Sb: DataMut<Elem = A>>( &self, b: ArrayBase<Sb, Ix1>, ) -> Result<ArrayBase<Sb, Ix1>>

Source§

fn solve_h_tridiagonal<Sb: Data<Elem = A>>( &self, b: &ArrayBase<Sb, Ix1>, ) -> Result<Array<A, Ix1>>

Source§

fn solve_h_tridiagonal_into<Sb: DataMut<Elem = A>>( &self, b: ArrayBase<Sb, Ix1>, ) -> Result<ArrayBase<Sb, Ix1>>

Source§

impl<A, S> SolveTridiagonal<A, Dim<[usize; 2]>> for ArrayBase<S, Ix2>
where A: Scalar + Lapack, S: Data<Elem = A>,

Source§

fn solve_tridiagonal<Sb: Data<Elem = A>>( &self, b: &ArrayBase<Sb, Ix2>, ) -> Result<Array<A, Ix2>>

Source§

fn solve_tridiagonal_into<Sb: DataMut<Elem = A>>( &self, b: ArrayBase<Sb, Ix2>, ) -> Result<ArrayBase<Sb, Ix2>>

Source§

fn solve_t_tridiagonal<Sb: Data<Elem = A>>( &self, b: &ArrayBase<Sb, Ix2>, ) -> Result<Array<A, Ix2>>

Source§

fn solve_t_tridiagonal_into<Sb: DataMut<Elem = A>>( &self, b: ArrayBase<Sb, Ix2>, ) -> Result<ArrayBase<Sb, Ix2>>

Source§

fn solve_h_tridiagonal<Sb: Data<Elem = A>>( &self, b: &ArrayBase<Sb, Ix2>, ) -> Result<Array<A, Ix2>>

Source§

fn solve_h_tridiagonal_into<Sb: DataMut<Elem = A>>( &self, b: ArrayBase<Sb, Ix2>, ) -> Result<ArrayBase<Sb, Ix2>>

Implementors§