pub struct Tridiagonal<A>where
A: Scalar,{
pub l: MatrixLayout,
pub dl: Vec<A>,
pub d: Vec<A>,
pub du: Vec<A>,
}
Expand description
Represents a tridiagonal matrix as 3 one-dimensional vectors.
[d0, u1, 0, ..., 0,
l1, d1, u2, ...,
0, l2, d2,
... ..., u{n-1},
0, ..., l{n-1}, d{n-1},]
Fields§
§l: MatrixLayout
layout of raw matrix
dl: Vec<A>
(n-1) sub-diagonal elements of matrix.
d: Vec<A>
(n) diagonal elements of matrix.
du: Vec<A>
(n-1) super-diagonal elements of matrix.
Trait Implementations§
source§impl<A> Clone for Tridiagonal<A>
impl<A> Clone for Tridiagonal<A>
source§fn clone(&self) -> Tridiagonal<A>
fn clone(&self) -> Tridiagonal<A>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresource§impl<A> DeterminantTridiagonal<A> for Tridiagonal<A>where
A: Scalar,
impl<A> DeterminantTridiagonal<A> for Tridiagonal<A>where
A: Scalar,
source§fn det_tridiagonal(&self) -> Result<A>
fn det_tridiagonal(&self) -> Result<A>
Computes the determinant of the matrix.
Unlike
.det()
of Determinant trait, this method
doesn’t returns the natural logarithm of the determinant
but the determinant itself.source§impl<A> FactorizeTridiagonal<A> for Tridiagonal<A>
impl<A> FactorizeTridiagonal<A> for Tridiagonal<A>
source§fn factorize_tridiagonal(&self) -> Result<LUFactorizedTridiagonal<A>>
fn factorize_tridiagonal(&self) -> Result<LUFactorizedTridiagonal<A>>
Computes the LU factorization
A = P*L*U
, where P
is a permutation
matrix.source§impl<A> FactorizeTridiagonalInto<A> for Tridiagonal<A>
impl<A> FactorizeTridiagonalInto<A> for Tridiagonal<A>
source§fn factorize_tridiagonal_into(self) -> Result<LUFactorizedTridiagonal<A>>
fn factorize_tridiagonal_into(self) -> Result<LUFactorizedTridiagonal<A>>
Computes the LU factorization
A = P*L*U
, where P
is a permutation
matrix.source§impl<A> OperationNorm for Tridiagonal<A>
impl<A> OperationNorm for Tridiagonal<A>
fn opnorm(&self, t: NormType) -> Result<Self::Output>
source§fn opnorm_one(&self) -> Result<Self::Output>
fn opnorm_one(&self) -> Result<Self::Output>
the one norm of a matrix (maximum column sum)
source§fn opnorm_inf(&self) -> Result<Self::Output>
fn opnorm_inf(&self) -> Result<Self::Output>
the infinity norm of a matrix (maximum row sum)
source§fn opnorm_fro(&self) -> Result<Self::Output>
fn opnorm_fro(&self) -> Result<Self::Output>
the Frobenius norm of a matrix (square root of sum of squares)
source§impl<A> PartialEq for Tridiagonal<A>
impl<A> PartialEq for Tridiagonal<A>
source§impl<A> SolveTridiagonal<A, Dim<[usize; 1]>> for Tridiagonal<A>
impl<A> SolveTridiagonal<A, Dim<[usize; 1]>> for Tridiagonal<A>
source§fn solve_tridiagonal<Sb: Data<Elem = A>>(
&self,
b: &ArrayBase<Sb, Ix1>,
) -> Result<Array<A, Ix1>>
fn solve_tridiagonal<Sb: Data<Elem = A>>( &self, b: &ArrayBase<Sb, Ix1>, ) -> Result<Array<A, Ix1>>
Solves a system of linear equations
A * x = b
with tridiagonal
matrix A
, where A
is self
, b
is the argument, and
x
is the successful result.source§fn solve_tridiagonal_into<Sb: DataMut<Elem = A>>(
&self,
b: ArrayBase<Sb, Ix1>,
) -> Result<ArrayBase<Sb, Ix1>>
fn solve_tridiagonal_into<Sb: DataMut<Elem = A>>( &self, b: ArrayBase<Sb, Ix1>, ) -> Result<ArrayBase<Sb, Ix1>>
Solves a system of linear equations
A * x = b
with tridiagonal
matrix A
, where A
is self
, b
is the argument, and
x
is the successful result.source§fn solve_t_tridiagonal<Sb: Data<Elem = A>>(
&self,
b: &ArrayBase<Sb, Ix1>,
) -> Result<Array<A, Ix1>>
fn solve_t_tridiagonal<Sb: Data<Elem = A>>( &self, b: &ArrayBase<Sb, Ix1>, ) -> Result<Array<A, Ix1>>
Solves a system of linear equations
A^T * x = b
with tridiagonal
matrix A
, where A
is self
, b
is the argument, and
x
is the successful result.source§fn solve_t_tridiagonal_into<Sb: DataMut<Elem = A>>(
&self,
b: ArrayBase<Sb, Ix1>,
) -> Result<ArrayBase<Sb, Ix1>>
fn solve_t_tridiagonal_into<Sb: DataMut<Elem = A>>( &self, b: ArrayBase<Sb, Ix1>, ) -> Result<ArrayBase<Sb, Ix1>>
Solves a system of linear equations
A^T * x = b
with tridiagonal
matrix A
, where A
is self
, b
is the argument, and
x
is the successful result.source§impl<A> SolveTridiagonal<A, Dim<[usize; 2]>> for Tridiagonal<A>
impl<A> SolveTridiagonal<A, Dim<[usize; 2]>> for Tridiagonal<A>
source§fn solve_tridiagonal<Sb: Data<Elem = A>>(
&self,
b: &ArrayBase<Sb, Ix2>,
) -> Result<Array<A, Ix2>>
fn solve_tridiagonal<Sb: Data<Elem = A>>( &self, b: &ArrayBase<Sb, Ix2>, ) -> Result<Array<A, Ix2>>
Solves a system of linear equations
A * x = b
with tridiagonal
matrix A
, where A
is self
, b
is the argument, and
x
is the successful result.source§fn solve_tridiagonal_into<Sb: DataMut<Elem = A>>(
&self,
b: ArrayBase<Sb, Ix2>,
) -> Result<ArrayBase<Sb, Ix2>>
fn solve_tridiagonal_into<Sb: DataMut<Elem = A>>( &self, b: ArrayBase<Sb, Ix2>, ) -> Result<ArrayBase<Sb, Ix2>>
Solves a system of linear equations
A * x = b
with tridiagonal
matrix A
, where A
is self
, b
is the argument, and
x
is the successful result.source§fn solve_t_tridiagonal<Sb: Data<Elem = A>>(
&self,
b: &ArrayBase<Sb, Ix2>,
) -> Result<Array<A, Ix2>>
fn solve_t_tridiagonal<Sb: Data<Elem = A>>( &self, b: &ArrayBase<Sb, Ix2>, ) -> Result<Array<A, Ix2>>
Solves a system of linear equations
A^T * x = b
with tridiagonal
matrix A
, where A
is self
, b
is the argument, and
x
is the successful result.source§fn solve_t_tridiagonal_into<Sb: DataMut<Elem = A>>(
&self,
b: ArrayBase<Sb, Ix2>,
) -> Result<ArrayBase<Sb, Ix2>>
fn solve_t_tridiagonal_into<Sb: DataMut<Elem = A>>( &self, b: ArrayBase<Sb, Ix2>, ) -> Result<ArrayBase<Sb, Ix2>>
Solves a system of linear equations
A^T * x = b
with tridiagonal
matrix A
, where A
is self
, b
is the argument, and
x
is the successful result.source§impl<A> SolveTridiagonalInplace<A, Dim<[usize; 2]>> for Tridiagonal<A>
impl<A> SolveTridiagonalInplace<A, Dim<[usize; 2]>> for Tridiagonal<A>
source§fn solve_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Ix2>,
) -> Result<&'a mut ArrayBase<Sb, Ix2>>where
Sb: DataMut<Elem = A>,
fn solve_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Ix2>,
) -> Result<&'a mut ArrayBase<Sb, Ix2>>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A * x = b
tridiagonal
matrix A
, where A
is self
, b
is the argument, and
x
is the successful result. The value of x
is also assigned to the
argument.source§fn solve_t_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Ix2>,
) -> Result<&'a mut ArrayBase<Sb, Ix2>>where
Sb: DataMut<Elem = A>,
fn solve_t_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Ix2>,
) -> Result<&'a mut ArrayBase<Sb, Ix2>>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A^T * x = b
tridiagonal
matrix A
, where A
is self
, b
is the argument, and
x
is the successful result. The value of x
is also assigned to the
argument.source§fn solve_h_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Ix2>,
) -> Result<&'a mut ArrayBase<Sb, Ix2>>where
Sb: DataMut<Elem = A>,
fn solve_h_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Ix2>,
) -> Result<&'a mut ArrayBase<Sb, Ix2>>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A^H * x = b
tridiagonal
matrix A
, where A
is self
, b
is the argument, and
x
is the successful result. The value of x
is also assigned to the
argument.impl<A> Eq for Tridiagonal<A>
impl<A> StructuralPartialEq for Tridiagonal<A>where
A: Scalar,
Auto Trait Implementations§
impl<A> Freeze for Tridiagonal<A>
impl<A> RefUnwindSafe for Tridiagonal<A>where
A: RefUnwindSafe,
impl<A> Send for Tridiagonal<A>where
A: Send,
impl<A> Sync for Tridiagonal<A>where
A: Sync,
impl<A> Unpin for Tridiagonal<A>where
A: Unpin,
impl<A> UnwindSafe for Tridiagonal<A>where
A: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
🔬This is a nightly-only experimental API. (
clone_to_uninit
)